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Abstract—An increasing number of technologies depend on
the large-scale collection of individual-level data, whether for
gathering statistical insights from billions of users or training
AI models. However, reliance on personal data raises privacy
concerns that, in turn, limit the collection and analysis essen-
tial to these technologies. Differential Privacy (DP) has gained
traction in both academia and industry, ensuring privacy by
adding carefully crafted noise to data or its outputs based on
a pre-defined DP parameter ε. As real-world implementations
emerge, we can examine how DP is practically used beyond
academic settings, supporting industry adoption and expanding
knowledge on DP applications. Using a systematic process, we
comprehensively surveyed the deployed parameters of DP config-
urations in both commercial and governmental implementations
(n = 140) and compared them to those employed in academic
research. We also propose a high-level taxonomy for DP con-
figuration, capturing practical implementations of differentially
private Machine Learning (ML) and Federated Learning (FL)
applications, highlighting key factors, including the privacy unit
and ε. Our results show that, on average, ε values utilized in
the industry span a wider range than those in academic re-
search, with distinct configuration policies for governmental and
commercial organizations. Moreover, we identified contrasting
reasoning behind ε selection across deployment environments,
alongside insufficient transparency in industry disclosures of DP
parameters and limited support for user-oriented configuration.
Finally, we discuss how the collected knowledge can be used
to create methodological guidelines for the configuration of DP
in real-world environments, supporting the vision of an Epsilon
Registry.

Index Terms—Differential Privacy, Privacy Budget, Privacy-
Preserving Machine Learning, Federated Learning, Survey

I. INTRODUCTION

DATA has become an essential resource for AI-driven in-
formation systems, significantly advancing data analysis,

particularly Machine Learning (ML) models, across various
domains such as healthcare, social networks, and smart energy.
The data used to develop such models and use them for analy-
sis often includes sensitive individual-level information, which
may pose a threat to privacy. Differential Privacy (DP) [1] has
been proposed as a rigorous privacy guarantee for computation
mechanisms, under which an external party cannot infer with a
high probability individual-level information. The level of pro-
tection offered by differential privacy is primarily determined
by the privacy loss parameter ε and the parameter δ, which
bounds the probability 1−δ with which the privacy guarantee
holds. These parameters together quantify the privacy loss
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incurred when personal data is used in a differentially private
analysis, effectively capping the amount of analysis performed
on that data to minimize the risk of revealing sensitive in-
formation. To satisfy DP in a data analysis, DP mechanisms
inject carefully calibrated noise (proportional to the privacy
budget ε [1]) into the data or its derivatives, thereby masking
individual contributions. In machine learning, noise is typically
added to model parameters, such as weights, or to gradient
computations in the case of deep learning neural networks. For
instance, a medical institute reporting the number of patients
with a rare disease adds a small amount of random noise to
the count, preventing adversaries from determining whether
a specific person is included in their dataset [2]. Similarly, a
company publishing the average employee salary introduces
noise to the reported value, ensuring that individual salaries
remain undisclosed even when different results on different
data versions are compared [3].

Due to its strong, future-proof, and adversary-agnostic guar-
antees [4], [5], differential privacy has gained growing interest
among industry organizations. Many have begun incorporating
DP mechanisms into products and machine learning models to
provide formal privacy protection [6]–[8]. Notable examples
include next-word prediction in Google’s English Gboard app
[9] providing (ε = 4.79, δ = 10−10)-DP protection and
Apple’s Photos app, which uses (ε = 1, δ = 1.5 × 10−7)-
DP when selecting key photos for iOS apps, such as Mem-
ories and Places. Recently, several applications emerged as a
result of the COVID-19 pandemic, including the release of
(ε = 2.19, δ = 10−5)-differentially private trends in Google
search data on vaccinations [10], and (ε = 2.64)-DP mobility
patterns across regions to help researchers understand the
pandemic’s societal impact [11]. Special attention has also
been given to the use of DP in governmental services [12].
A notable milestone was the U.S. Census Bureau’s adoption
of DP in its Disclosure Avoidance System (DAS) [13], which
demonstrated the practical viability of DP and triggered further
research by other National Statistical Offices seeking to apply
it in their own census releases [14], [15]. DP has also been
deployed in various other domains, including media [16],
communications [7], [17], and smart energy [18].

Although introduced almost two decades ago, the transition
of DP from theory to practice has raised several practical
questions. These questions reflect the complexity of imple-
menting differentially private mechanisms for data analysis,
often stemming from a limited understanding of how to
operationalize DP and the lack of concrete implementation
guidelines, which can all lead to misconfiguration. The term
DP configuration is considered herein as the process during
which data practitioners define the DP protection guarantees
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Milestone in deployment of DP:
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Differentially private
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Fig. 1. Evolution of the privacy loss budget ε used in academic, commercial, and governmental/non-profit DP deployments. Academic research configurations
are not exhaustive and serve as a baseline for comparison. Privacy parameters of use cases analyzing data temporally were converted to a common ε per day
units (when applicable). For static data releases (e.g., Census), the original one-time ε is plotted without normalization. δ is not shown due to its low and
indistinguishable values across all deployments. In academic literature (which typically evaluate a range of values) median ε is shown. Dashed lines depict a
forecast through a polynomial regression line fitted on the ε values for each organization type based on the last 5 years.

their system will offer data subjects, design the setup under
which these guarantees are met and allocate the required
privacy budget ε to that end. In practice, in the case of
an already deployed DP system, the configuration may only
refer to the setting of ε (and δ, if applicable). Choosing
the necessary privacy budget for a specific data analysis is
viewed as a decision-making process rather than a strictly
technical statistical decision, primarily driven by a social
choice and privacy policies that consider potential privacy
risks [19]. Furthermore, similarly to other Privacy-Enhancing
Technologies (PETs), the use of DP for privacy protection
comes at the cost of a decrease in data utility—a property that
has become the focal trade-off in research concerning privacy,
and particularly DP, referred to as the privacy-utility trade-
off [20]. Hence, the tension between privacy and utility has
spurred a debate about the responsibility of data practitioners
in considering this trade-off because misconfiguration of ε can
even become life-threatening, as in the case of DP algorithms
for guiding pharmacogenomic dosing [21]. Misconfiguration
of DP can also lead to a potential overestimation of privacy
protection caused by data practitioners’ misconception that
their systems offer the desired DP protection, when, in fact,
users can still be susceptible to privacy harm.

A line of works [22], [23] survey DP with a profound formal
background for its privacy guarantees. Other survey articles
examine the use of DP in building privacy-preserving analysis
mechanisms across various domains, including healthcare [24],
social networks [25], communication systems [26], and geo-

analytics [27]. A special emphasis was placed on surveying
differentially private techniques for training and deploying
machine learning models [28], [29], which are widely used
in everyday products, such as smartphone keyboards and text
messaging apps. These also include the use of Federated
Analytics (FA) [30] and Federated Learning (FL) [31], which
extend traditional centralized ML to distributed settings where
multiple parties can collaboratively train ML models while
ensuring DP. However, the existing surveys focus on a de-
scription of empirical research on DP applications and do not
cover the exact implementation details of DP in deployed com-
mercial or governmental products. Analyzing the way existing
commercial, governmental and academic DP implementations
are configured is crucial to understanding how organizations
can set up DP as part of their operational process and the
potential limitations and promises of their deployments. In
addition, to the best of our knowledge, existing surveys
do not offer a comprehensive account of deployed privacy
configurations in real-world DP deployments, including the
unit of privacy protection, its granularity, and the underlying
DP mechanism.

In this paper, we conduct a systematic literature review
on practical DP configurations utilized for commercial and
governmental use cases in the industry. We give special
attention to the gap between the configuration of DP in the
industry and that established for academic research, which can
naturally diverge. Understanding the gap between commercial
or governmental deployments and academic research may help
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in understanding how the transition from theory to practice
can be made more accessible to data practitioners working
on the deployment of DP mechanisms, thereby expanding the
existing body of knowledge on DP. To that end, we present a
comprehensive list of recent DP deployments across various
use cases, detailing their configurations and illustrating the
distribution of the ε parameter (Figure 1).

Through our systematic literature review, we highlight sev-
eral insights about the challenges in the configuration of DP
and suggest potential research directions for mitigating them.
Our analysis reveals that governmental organizations, such
as the U.S. Census Bureau, tend to allocate privacy budgets
across a broader range, while commercial companies generally
operate within a narrower range of ε values. In contrast,
academic research has typically used much lower ε values,
often ε < 1, to prioritize privacy and demonstrate the practical
viability of differential privacy methods. Moreover, our survey
identified that the selection of DP parameters in both industry
and academia is driven by a range of factors, including
arbitrary choices, community best practices, utility-based tun-
ing, and regulatory requirements. Our survey can help data
practitioners of different roles, including data scientists and
privacy stewards who are responsible for the enforcement
of privacy policies, understand the rationale behind existing
DP configurations. Additionally, our findings can serve as
a reference for data practitioners to establish a baseline for
their configurations and position their use cases within the
landscape of industry-deployed solutions. This can help in pro-
moting the operationalization of DP, thereby breaking through
the barrier associated with practical DP implementation and
promoting Dwork’s et al. vision of an “Epsilon Registry” [19].

To summarize our contributions, we aim to answer two key
questions as follows.

1) How do DP configurations, particularly the (ε, δ) pa-
rameters, vary across commercial deployments, govern-
mental applications, and academic research?

2) How do the underlying rationales for selecting DP
configurations differ among commercial deployments,
governmental applications, and academic research?

This paper is organized as follows. Section II reviews the
formal guarantees of differential privacy (DP). Section III
details our systematic literature review methodology. Section
IV presents a taxonomy of key DP configuration factors.
Sections V and VI examine and compare DP applications
and configurations in industry and academia. Section VII
concludes with a discussion of key findings.

II. BACKGROUND AND PRELIMINARIES

A. Differential Privacy (DP)

Perturbation-based privacy methods have been proposed
to address the vulnerability of syntactic privacy protection
methods. The key idea behind such methods is to introduce a
randomized perturbation that protects the privacy of individu-
als whose personal information is shared with a data processor.
Built on this notion, Differential Privacy (DP) [1] has been
proposed as a mathematically rigorous privacy guarantee. Let
D = (x1, . . . , xn) be a dataset where each xi represents the
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Fig. 2. Typical flows of an interactive data analysis under centralized and
local DP settings. The main actors are depicted in gray boxes.

data contributed by data subject i. A randomized mechanism
M : D → S that performs a statistical analysis f satisfies
(ε, δ)-differential privacy, for ε > 0 and δ ∈ [0, 1], if and only
if for all pairs of neighboring datasets D,D′ ∈ D differing in
at most one record, and for all output subsets S ⊆ S,

Pr[M(D) ∈ S] ≤ exp(ε) · Pr[M(D′)] ∈ S] + δ (1)

The additive term δ accounts for the probability that ε-DP is
violated, implying that ε-DP is satisfied with probability 1−δ.
When δ = 0 the mechanism satisfies pure ε-DP, whereas δ > 0
corresponds to approximate (ε, δ)-DP.

The parameter ε controls the maximum amount of informa-
tion that can be learned about any individual’s data through
the analysis of a dataset. In other words, the outcome of an
analysis is equally likely, up to a multiplicative factor eε,
independent of whether any individual’s data is present in
the analyzed dataset. The key idea behind the privacy loss
budget parameter is that privacy can be viewed as a resource,
which is consumed during the course of a data analysis, until
all “privacy” is exhausted and no additional analysis can be
performed on the data. Hence, the lower the privacy loss
budget ε, the higher the protection DP offers, and vice versa.
The failure probability δ is conventionally set to a negligible
value, often based on the heuristic δ < 1/n2, proportional to
the dataset size n [5]. The allocation of ε and δ lacks clear
guidelines, as it is often regarded as a policy-driven process,
rather than a pure technical procedure.

B. Local Differential Privacy (LDP)

DP can be implemented in either a centralized mode (i.e.,
centralized DP) or a local mode (i.e., local DP) [5], [32],
as illustrated in Figure 2. In centralized DP, data is first
aggregated at the data processor’s side before DP protection
is applied on the output of an underlying data analysis. The
centralized approach assumes that data subjects trust the data
processor, allowing it to store raw sensitive data. In contrast,
Local Differential Privacy (LDP) [32] has been proposed as
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a DP mechanism that is suitable for use cases where the
data processor is deemed untrusted, aligning with current real-
world scenarios. In local DP, DP protection is first applied
locally at the data owner’s side before sending the masked data
to the data processor. Consequently, the data processor receives
a privacy-preserving version of the data, rather than the raw
data, ensuring stricter privacy compared to the centralized
mode. Formally, a randomized mechanism M : V → S is ε-
local differentially private if and only if for any pair of inputs
v, v′ ∈ V , and for any possible output y ∈ S of M,

Pr[M(v) = y] ≤ exp(ε) · Pr[M(v′)] = y] (2)

LDP has also laid the foundation to personalized approaches
to satisfying DP, such as Personalized Differential Privacy
(PDP) [33], where the privacy guarantees are set locally
at an individual level, setting a distinct DP budget ε for
each individual according to their privacy preferences. One
disadvantage of LDP is that it requires adding more noise than
in centralized DP to achieve the same level of protection, with
negative consequences on data utility [5]. Moreover, when
users contribute numerous correlated data points (e.g., movie
views), adding noise to each event may be insufficient to
protect overall privacy, thereby reducing the effectiveness of
local DP at the user level [34]. Accordingly, hybrid DP ap-
proaches, such as the shuffle model [35], have been introduced
to combine the benefits of local and central DP.

C. Differentially Private Perturbation Mechanisms
Differential Privacy is typically implemented through noise-

addition mechanisms that introduce carefully calibrated noise
to data, analysis outputs, or intermediate computations, to limit
the leakage of individual information. The Laplace mechanism
[1] or the Gaussian mechanism [5] are commonly used to
satisfy DP for numerical outputs by drawing noise from
Laplace and Gaussian distributions, respectively. The geomet-
ric mechanism [36] was later proposed as a discrete variant
of the Laplace mechanism. Recently, the discrete Gaussian
mechanism [37] was introduced as a practical alternative to the
continuous Gaussian mechanism, offering comparable privacy
and accuracy guarantees while improving interpretability in
discrete data settings, such as the release of census counts.

When the protected output is categorical, or when a data
processor needs to select a privacy-preserving answer from
a finite or infinite set of possible outputs, the exponential
mechanism [5] can be used. The exponential mechanism
can be replaced with the Report Noisy Max mechanism [5]
in case of a finite set of answers. The main advantage of
the exponential mechanism is that the privacy cost of the
mechanism is ε regardless of the size of that set because it
releases only the candidate answers with the largest noisy
value. In the case of a stream of queries, the Sparse Vector
Technique (SVT) [5], including its basic form known as the
Above-Threshold algorithm, can be employed. A summary of
the basic perturbation mechanisms is provided in Table I.

D. Relaxations of DP
Several practical relaxations of DP [42]–[45] model privacy

loss as a random variable and bound its distribution, capturing

TABLE I
CHARACTERISTICS OF BASIC PERTURBATION MECHANISMS.

CENTR.=CENTRALIZED; NUM.=NUMERIC; CAT.=CATEGORICAL;
BOOL.=BOOLEAN.

Mechanism DP Mode Data Type Guarantee
Local Centr. Num. Cat. Bool.

Randomized Response [38] • ◦ ◦ • • ln(3)-DP
Laplace [1] • • • ◦ ◦ ε-DP
Gaussian [5] • • • ◦ ◦ (ε, δ)-DP
Geometric [36] • • • ◦ ◦ ε-DP
Exponential [3] ◦ • ◦ • • ε-DP
Report Noisy Max [5] ◦ • • • • ε-DP
Sample & Aggregate [39] ◦ • • • • (ε, δ)-DP
Functional [40] ◦ • • ◦ ◦ ε-DP
Above Threshold [5] ◦ • • ◦ • ε-DP
Sparse Vector Tech. [3] ◦ • • ◦ • (ε, δ)-DP
Propose-Test-Release [41] ◦ • • ◦ ◦ (ε, δ)-DP

average rather than worst-case guarantees through divergence-
based definitions. The most common definition for diver-
gence is Rényi divergence [46], which measures the closeness
Dα(P ||Q) of two probability distributions P and Q over R.
Rényi DP (RDP) [42] was proposed based on that metric as a
relaxation of DP, which avoids the definition of “catastrophic”
failure while preserving all the composition properties of DP.
Formally, a randomized mechanism M : D → S is (α, ε)-
RDP for some order α if for any pair of neighboring datasets
D,D′ ∈ D, their Rényi divergence satisfies

Dα(M(D)∥M(D′)) ≤ ε. (3)

A key advantage of Rényi DP is its versatility: any mechanism
satisfying (α, ε)-RDP also satisfies (ε+log(1/δ)/(α− 1), δ)-
DP for any 0 < δ < 1, simplifying configuration and enabling
easier comparison across algorithms.

DP was later formulated as Zero-Concentrated DP (ρ-zCDP)
[44], defined in terms of Rényi divergence with a stronger
requirement than RDP, limiting the privacy parameter to a sin-
gle parameter ρ, which controls the expectation and standard
deviation of the privacy loss. Similarly to RDP, the obtained
guarantees of ρ-zCDP can be converted back to (ε, δ)-DP, such
that a ρ-zCDP mechanism provides (ρ + 2

√
ρ log(1/δ), δ)-

DP for any δ > 0 (Proposition 1.3 in [44]). Both RDP
and the concentrated-DP versions generate noise based on
the Gaussian mechanism [5]. Truncated CDP (tCDP) [45],
a relaxation of CDP, loosens the requirement of Gaussian-
concentrated privacy loss, requiring the noise distribution to be
only sub-exponential in its tails. tCPD also allows for privacy
amplification via subsampling [47], yielding exponentially
more accurate analyses.

The advantage of RDP, zCDP, and tCDP lies in their ability
to yield lower ε values (indicating stronger privacy guarantees)
for the same level of added noise, thereby enabling more
analyses within a given ε budget. The relaxed constraints of
zCDP, along with its improved privacy accounting, have con-
tributed to its widespread adoption in real-world applications,
particularly differentially private distributed machine learning,
including Federated Learning [48].
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Fig. 3. Systematic literature review flow.

E. Differentially Private Machine Learning

Although DP was initially associated with statistical analy-
sis, such as histograms and descriptive statistics (e.g., count,
average, and median), modern real-world applications predom-
inantly use it in Machine Learning (ML) for model training.
In the context of ML, DP operates by injecting noise into
the derivatives of the model’s training through a randomized
mechanism. For instance, in regression models [40], [49],
DP is enforced by adding noise to the objective function’s
coefficients. In classification models, such as Gaussian Naive
Bayes [50], a differentially private mechanism perturbs the
learned means and variances used to compute conditional
probabilities.

Recent advances in large-scale machine learning have in-
creased the demand for scalable training methods that preserve
both privacy and utility. These models often rely on Deep Neu-
ral Networks (DNNs), trained using Stochastic Gradient De-
scent (SGD), which iteratively updates the network’s weights
to minimize the model’s objective function. To preserve dif-
ferential privacy, noise is added to gradients during training
via the Differentially Private Stochastic Gradient Descent (DP-
SGD) algorithm [51], a method widely adopted in commercial
applications. DP-SGD preserves DP in each training iteration
by first clipping each instance’s gradients to a fixed norm, then
adding Gaussian noise to the average per-instance gradients. A
central aspect of DP-based ML training is privacy accounting,
which tracks cumulative privacy loss across iterations to ensure
it stays within a predefined loss budget [51].

Federated Analytics (FA) [30] enables large-scale, privacy-
preserving data analysis by allowing distributed analytical
queries, such as computing averages, across multiple parties
without exposing raw data to a central entity. Federated Learn-
ing (FL) [31] extends this concept to machine learning by
treating model training as a distributed optimization problem.
Unlike centralized training, FL keeps data decentralized, with
clients training models locally on their own data and sending
only model updates to a central server, which iteratively aggre-

gates them into a global model. This paradigm is well-suited
for resource-constrained IoT devices, such as smartphones.
Differentially Private Federated Averaging (DP-FedAvg) [52]
is a common approach for integrating DP into FL, providing
user-level DP guarantees [51]. It extends the DP-SGD method
[51] by performing a few local training steps based on each
user’s private data before the global model update is computed
by clipping and averaging the local updates, followed by the
addition of noise to the global update.

III. SYSTEMATIC LITERATURE REVIEW METHODOLOGY

To create an initial set of articles for inclusion, we utilized
Google Scholar to locate research articles from all types of
venues, including conferences, journals, technical reports, and
workshops. In addition, the ACM Digital Library was used to
locate relevant articles, especially from computing journals and
conferences. All articles were retrieved based on their titles,
abstracts, and their introduction sections. We did not restrict
our search to specific publishing time frames to maximize the
number of search results, though all articles were naturally
published after DP’s introduction in 2006. However, since the
adoption of DP has only recently begun to gain traction in
the industry, the majority of reviewed articles describing real-
world use cases of DP have been published after 2018. We
searched for queries containing the exact phrases ’Differential
Privacy’ (or ’Differentially Private’), combined with keywords
related to configuration (e.g., ’epsilon,’ ’privacy budget,’ ’pa-
rameters’) or practical deployment (e.g., ’practical,’ ’practice,’
’deploy,’ ’real-world,’ ’applications,’ ’industry’). Figure 3
depicts the flow of our systematic review process.

We expanded our search to find other relevant articles by
examining the reference lists in the retrieved articles. We
excluded articles that did not describe general methods for the
selection of ε or had insufficient empirical evaluation. Despite
the variety of recent applications and use cases adopting DP in
the real world, not all could be utilized for our review due to
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incomplete documentation or a lack of methodological details
on how DP was implemented.

In cases where articles that pertained to commercial de-
ployments did not include any implementation details but
provided adequate motivation for the underlying use case, we
included these in our survey to obtain an understanding of
the transparency of organizations implementing DP. In other
cases, recently deployed products incorporating DP could only
be found online through a Google search and not in aca-
demic search engines because of unpublished documentation
to support them. To address this issue, we also searched for
online blogs (2 blogs [53], [54]) that directed us to the sources
where recent use cases of DP are described, in addition to
official research blog posts of companies in the industry (e.g.,
Google’s or Microsoft’s research blogs). Our sample consisted
of 140 DP-related articles, serving as input to our survey
across four topics: general background of DP configuration (17
articles), academic research on DP applications (81 articles,
used for comparison), and DP deployments by commercial
and governmental organizations (42 articles).

IV. HIGH-LEVEL TAXONOMY FOR DIFFERENTIAL
PRIVACY CONFIGURATION

Configuring DP for data analysis is a multi-faceted process
that typically involves defining the privacy parameters ε and
δ. While these parameters lie at the core of the configuration,
commercial and governmental deployments often require addi-
tional preparatory steps to accommodate practical constraints
and align the setup with specific use case objectives. However,
with the growing availability of black-box DP tools, many of
these complexities are mitigated. In such cases, data admin-
istrators often rely on default built-in algorithms, primarily
configuring only the ε and δ parameters.

To better understand the configuration process and con-
tribute to the existing body of knowledge on DP operational-
ization [5], [19], [28], we categorized key conceptual factors
involved in DP configuration into two main groups: privacy
guarantees and operational design (Figure 4), as follows.

A. Differential Privacy Guarantees

First, the data processor (alternatively, the organizational
data steward/controller) evaluates potential avenues through
which sensitive information may be leaked, leading to privacy
loss [19]. Privacy loss is incurred when collected data is used
in ways that affect others’ experiences or reveal information
about them. The analysis of potential paths for privacy loss
can help data practitioners who are responsible for operating
and configuring DP systems to get a high-level understanding
of the constraints that should be considered in the process and
hence can impact the setting of ε. Then, the data processor
specifies the granularity of the guaranteed DP protection and
the corresponding privacy unit that is protected by it. DP pro-
tection granularity refers to the level at which a differentially
private mechanism protects from inferring private information.
User-level protection granularity offers an ε-DP guarantee over
all data instances associated with a user or device (e.g., a
user’s watch history), while group-level protection generalizes

Differential Privacy
Configuration

Privacy
Guarantees

Potential Privacy Loss Vectors

DP Protection Granularity

User-level

Event-level

Group-level

DP Definition

Pure ε-DP

Approx. (ε, δ)-DP

Rényi Differential Privacy

Concentrated DP

Concentrated DP (CDP)

Zero-Concentrated DP (zCDP)

Truncated Concentrated DP (tCDP)

Privacy Unit
Entity Type

Temporal Scope

Privacy Loss Budget ε

Failure Probability δ

Operational
Design

Data Release Mechanism
Non-Interactive

Interactive

DP Mode

Centralized DP

Local DP

Hybrid DP

Perturbation Mechanism

Additive Noise

Continuous
Laplace Mechanism

Gaussian Mechanism

Discrete

Discrete Laplace
Mechanism

Discrete Gaussian
Mechanism

Geometric
Mechanism

Input Randomization Randomized Response

Selection
Exponential Mechanism

Report Noisy Max

Aggregation-Based Sample-and-Aggregate

Objective Perturbation Functional Mechanism

Conditional Release

Above-Threshold

Sparse Vector Technique

Propose-Test-Release (PTR)

Fig. 4. Taxonomy of key factors in the process of DP configuration, comprised
of tunable settings and design choices. Icons depict abstract (·), tunable
(�), and categorical (�) factors. Only the fundamental building blocks of
perturbation mechanisms are shown, forming the basis of DP methods.

this to arbitrary groupings. In contrast, event-level protection
(also referred to as instance-level protection) provides ε-DP for
each individual data instance (e.g., a single movie watched),
resulting in weaker overall protection for users with multiple
events. The privacy unit [5], [19] defines the granularity of
protection by bounding the cumulative privacy loss for a
protected entity over a given time period. For example, in a
streaming service, where users contribute viewing data daily,
the privacy unit may be defined as one user per day to bound
their privacy loss. Finally, the allocation of the privacy loss
budget and the choice of failure probability are key factors
determining the strength of the privacy guarantee and the
number of allowable data analyses on a dataset.

B. Operational Design

Once the privacy unit is defined, the data processor can
select the data release mechanism and the mode under which
the mechanism operates. This may take the form of a non-
interactive release, publishing differentially private data deriva-
tives, or an interactive querying system that provides differen-
tially private outputs to external analysts during inference (e.g.,
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TABLE II
TAXONOMY-BASED MAPPING OF CONFIGURATION COMPONENTS IN GOOGLE’S DIFFERENTIALLY PRIVATE NEXT-WORD PREDICTION SYSTEM FOR A

SINGLE-DEVICE USER TYPING IN U.S. ENGLISH.

Type Component Level Explanation

Pr
iv

ac
y

G
ua

ra
nt

ee
s

Potential privacy loss
vectors

• Memorization of unique user phrases during training: On-device training can still lead to
memorization of unique phrases, which may be reconstructed from the final model.

• Leakage during local update aggregation: Individual device contributions may be exposed
or inferred by the central server during aggregation.

• Client re-identification during update propagation: Frequent participation of a user’s device
in training rounds with insufficient time gaps may enable client re-identification.

DP protection granularity User-level Privacy guarantees apply to all data from a single user device.
DP definition zCDP Uses Zero-Concentrated DP, which can be converted to (ε, δ)-DP.
Privacy unit User device per 24

hours
The entire update from a user’s device is protected by DP. Participation is
constrained by a system-enforced timer (e.g., 24-72 hours).

Privacy budget ε 4.799 ρ = 0.250-zCDP is used given δ = 10−10, which corresponds to (ε =
4.799, δ = 10−10)-DP.DP failure proba. δ 10−10

O
pe

ra
tio

na
l

D
es

ig
n

Data release mechanism Interactive Differentially private predictions are generated in response to user inputs.
DP mode Central DP Noise is added on the trusted server side after aggregating local updates.
Perturbation mechanism Discrete Gaussian

Mechanism
Differentially private optimization is performed via the DP-FTRL algorithm
[55], which adds noise using the Discrete Gaussian Mechanism.

statistical estimates or model predictions). The release policy
can then be used to determine whether DP will be provided via
a centralized, local, or hybrid setting (e.g., federated analytics
or federated learning).

Finally, the DP perturbation mechanism is determined based
on the analysis type (either general statistical analysis or
machine learning) and the data type (e.g., numerical, categor-
ical or mixed) [19]. We also differentiate between centralized
ML, where a single entity trains the model using all the
raw data, and distributed ML (including Federated Learning),
where multiple parties collaborate in the training process.
Despite their structural differences, both approaches achieve
DP through similar techniques, primarily by injecting noise
either at the model’s prediction level (using the sample-and-
aggregate framework [39]) or during training. In the latter
case, noise can be introduced at different stages, such as
injecting noise to the model’s weights, modifying the objective
function using the Functional Mechanism [40], or perturbing
the gradients in gradient-based models through algorithms,
such as DP-SGD [51] and DP-FedAvg [31].

C. Example of Taxonomy-Based Configuration

To illustrate how our DP configuration taxonomy can help
practitioners benchmark their deployments against other com-
mercial implementations and identify trade-offs in privacy
guarantees, we analyze Google’s Next-Word Prediction (NWP)
feature in the Gboard app (Google’s virtual keyboard) [56].
Google employs machine learning to enhance the typing
experience by predicting the next word a user is likely to
type. This feature provides real-time word suggestions after
each entry, enabling users to type more quickly and efficiently.
Google employs Federated Learning to train its language
model directly on users’ devices without centrally collecting
raw personal information, aggregating privately computed
updates via a secure protocol that prevents the server from
accessing any individual’s data.

Table II maps the deployment’s configuration decisions
using our taxonomy (Figure IV), providing a structured view
of the resulting privacy guarantees. This structured view also
allows data practitioners to systematically compare the con-
figurations of different deployments. For example, Gboard’s
configuration offers users with moderate DP guarantees, i.e.,
stronger than those provided by Recurve for smart energy
metering [18] ((6.8, 4.08× 10−8)-DP), but weaker than those
in Google Shopping’s page-view count release ((1, 10−9)-DP)
[57]. These differences also originate from distinct DP defini-
tions: while both Gboard and Recurve provide central DP with
a per-user daily budget, Google applies zCDP with a discrete
perturbation mechanism, whereas Recurve adopts approximate
DP with noise drawn from a continuous distribution.

V. REVIEW OF COMMERCIAL AND GOVERNMENTAL DP
DEPLOYMENTS

In this section, we review both commercial and governmen-
tal DP deployments by multiple organizations across various
domains, focusing on their use cases and DP configurations.
In Table IV, we provide the list of properties for each use
case with its exact reported DP parameters 1. We present the
configurations on a unified grid in Figure 1 to illustrate the
distribution of varying ε values (a full list of depicted papers
is provided in Table V in the Appendix).

A. Web, Communication & Browsing Behavioral Analytics

DP has been predominantly applied to large-scale behavioral
analytics systems to enable privacy-preserving collection of
user interaction data, such as web activity and browsing behav-
ior. Google’s initial deployment of DP was performed through
the RAPPOR (Randomized Aggregatable Privacy-Preserving
Ordinal Response) mechanism, used to collect private brows-
ing data in the Chrome browser [32]. This included data

1The privacy settings in some use cases could not be extracted because the
supporting papers did not provide enough implementation details.
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such as crash reports, homepage settings, and active system
processes, supporting research into malware infections by
enabling the identification of compromised machines through
correlations with users’ browsing histories. RAPPOR applied
a local DP model by collecting privatized data directly on
user devices, thereby ensuring user-level privacy protection. It
employed the randomized response technique [38], encoding
sensitive values by hashing them into a Bloom filter and intro-
ducing randomized noise to preserve DP. Similarly, Microsoft
adopted DP in its Windows telemetry data collection service
[8], aiming to improve user experience by analyzing patterns in
application usage over time (e.g., time spent in specific apps).
Equivalent privacy-preserving telemetry mechanism was also
developed by Mozilla for the Firefox browser using the Prio
framework [58], but its deployment details have not been
disclosed. RAPPOR was officially deprecated in 2021 and
replaced with more advanced DP-based telemetry solutions.

Extending this trend, Google also integrated DP into its
search engine services. To that end, it developed a streaming
DP framework that continuously released large-scale differen-
tially private histograms using the Differential Privacy SQL
Pipelines (DP-SQLP) algorithm [57], ensuring user-level DP
protection. DP-SQLP was deployed to generate two types of
statistics. First, Google continuously released product page-
view counts (i.e., user impressions), which served as a key
signal for Google Shopping to prioritize page crawling and
update critical information, such as prices and availability,
thereby enhancing the shopping experience. Second, DP was
applied in Google Trends [57] to display trending queries while
preserving DP.

Apple used DP for private inference of Safari default auto-
play policies for websites that auto-play videos [7], predicting
whether to mute or auto-play the sound. Furthermore, Apple
used DP to privately identify high-resource-consuming web
domains in Safari, i.e., domains that are more likely to create
high energy or memory consumption [7]. Apple achieved DP
by removing user identifiers and any timestamps, in addition
to the use of sketching techniques to perturb values and reduce
dimensionality. Apple implemented the DP protection with a
privacy unit of a single data collection event (e.g., website
visit), providing event-level local DP protection. However,
its guarantees can be translated to user-day units because
each user device practically sends a limited number of data
events per day. In 2023, Apple integrated DP in iOS to
identify frequently photographed iconic locations across users,
enabling the Photos app to automatically select representative
images for features such as Memories, all while protecting
individual user data [59]. Apple’s learning pipeline ensured
event-level DP by processing data on-device, where each
device encoded a location-category pair (e.g., a person in New
York), applied random noise for local DP, and later generated
frequency-based insights for the selection of key photos.

Recently, the Wikimedia Foundation implemented DP to
release daily Wikipedia page visits at a country level, based
on current and historical Wikipedia page views [60]. This has
revolutionized the way the Wikimedia Foundation exposes in-
formation to the public about its projects, allowing it to release
new statistics on a large scale. According to the Wikimedia

Foundation, more than 135M statistics about Wikipedia page
visits have been published, aggregating 325B page views in
total [60]. This release has been expanded to include differ-
entially private statistics on editor activity (e.g., edit counts)
by Wikipedia project and country [61], including a one-time
dataset requested by the Russian Wikimedia community to
support analysis of the editor landscape in Russia [62].

A similar behavioral analytics use case was announced by
LinkedIn, which employs Apache Pinot (a real-time distributed
analytics platform) to provide data analysts with interac-
tive access to aggregated insights on user engagement [16].
Through this approach, LinkedIn aims to support marketing
analytics applications while ensuring user-level DP protection.
To enhance privacy protection and prevent averaging attacks,
LinkedIn capped the number of queries an analyst can issue,
using a privacy unit defined as one user per analyst per month.
This restriction ensures that repeated queries cannot be used
to infer individual information through result averaging. In a
related deployment, LinkedIn added analytics [63] to each post
to analyze user engagement metrics, such as views and shares,
while preventing identification of the post’s viewers. To that
end, LinkedIn integrated DP into their analytics framework
so that insights derived from user interactions preserve user
confidentiality, thereby upholding privacy standards and user
trust. However, the exact DP parameters and privacy units
of that analysis were not disclosed. Following a similar
strategy, Facebook released a large-scale, differentially private
dataset detailing user interactions with over 38 million publicly
shared URLs on Facebook between 2017 and 2019 [64]. This
differentially private dataset enabled researchers to analyze
demographic trends and engagement patterns using aggregated
metrics on views and shares.

B. Language & Communication
DP has been increasingly adopted in language and commu-

nication technologies to enhance user experiences while safe-
guarding individual privacy. For example, Apple embedded
a local differentially private data collection mechanism in its
iOS system to collect statistics about Emoji usage [6], [7] and
use it to improve Emoji keyboard ordering (i.e., pushing more
popular Emojis to the top of the keyboard layout). In addition,
Apple used DP to improve on-device lexicons of previously
unknown words typed using QuickType (Apple’s predictive
keyboard) [7]. These applications employed event-level local
DP, where each individual data collection event (e.g., a typing
instance) served as the privacy unit.

A related deployment was carried out by Microsoft, who
has recently started to apply DP to machine learning prediction
tasks. One prominent example is the training of deep learning
models on Message-Reply (MR) pairs extracted from emails
and chats to suggest reply completions within Microsoft
Office tools [65]. The training process preserved user-level DP
protection, masking each user’s contributions. More recently,
Google employed Federated Learning [66] combined with
user-level DP for next-word prediction in its Gboard virtual
keyboard app [9]. This approach enhanced the typing experi-
ence on Android devices through features such as multilingual
word suggestions and smart text selection [67].
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C. Geo-Location, Mobility & Healthcare

Google leveraged its success with DP implementations
to handle location data in a variety of use cases. For in-
stance, DP has been extensively used for releasing mobil-
ity reports during the COVID-19 pandemic to aid health
researchers in understanding its impact on the population.
To that end, Google released community mobility reports
about the daily change in mobility patterns of Google users
during the COVID-19 pandemic (reflecting work-from-home
or stay-at-home policies) [11]. In addition, Google released
international urban mobility patterns to study how human
movement patterns vary across sociodemographic regions to
improve urban sustainability [68], [69]. This study on mobility
patterns was expanded into the broader Environmental Insights
Explorer (EIE) project, which publicly released global city-
level statistics on human mobility and environmental factors,
including carbon emissions from buildings and transportation,
as well as solar potential [70]. Google enhanced this analysis
using Federated Analytics (FA) [30] to process large-scale
aggregated location histograms with user-level DP. This was
achieved by first locally clipping user location data, then
aggregating it on a centralized server with differentially private
noise, effectively masking sensitive fine-grained details. In a
similar use case, Uber deployed a DP-based system enabling
safe queries on customer geospatial data, later formalized as
the CHORUS framework [71], [72].

The adoption of DP in healthcare-related applications has
progressed more slowly than in other domains. This can be at-
tributed to the inherent sensitivity of medical data and the chal-
lenges healthcare organizations face in implementing privacy-
preserving techniques that comply with legal frameworks such
as the Health Insurance Portability and Accountability Act
(HIPAA) [73]. Despite the legal and technical challenges,
Apple integrated DP mechanisms into its HealthKit app to
enhance its functionality [7]. Specifically, Apple employed
local DP to count the most common health data types that users
were monitoring over time while ensuring that no sensitive
information could be learned about users’ medical conditions.
For example, Apple reported sleep analysis, heart rate, and
calories burned as the most monitored user indicators.

Spectus utilized DP to protect the statistics concerning
evacuation rates of people during natural disasters [74], such
as Hurricane Irma, which hit the U.S. East Coast in 2017.
By measuring the percentage of evacuated residents, common
destinations, and traveled distance, Spectus provided emer-
gency services with insights into the effect of natural disasters
on the population to improve their response in case of an
emergency. Another notable example in the healthcare domain
comes from Google, which employed differential privacy
during the COVID-19 pandemic to help health organizations
better understand the needs of their communities. Specifically,
Google utilized its search engine to publish daily count
trends of Google searches pertaining to COVID-19 medical
symptoms across different geographical areas [75]. Moreover,
in an effort to raise awareness of the necessity of vaccines
and establish a status for COVID-19 vaccination rates, Google
issued differentially private daily count trends of searches

concerning COVID-19 vaccinations, vaccination intent, and
related medical side effects [10]. Furthermore, a joint effort
by Google and Apple produced the Exposure Notification
Privacy-preserving Analytics (ENPA) system [76] that enabled
notifications of exposure to positively diagnosed COVID-19
patients without disclosing any personally identifiable infor-
mation. Google and Apple’s notification model was protected
with shuffle DP [35], incorporating both local randomized
response and central aggregation.

D. Census, Demographics & Economy

Governmental organizations, such as the U.S. Census Bu-
reau, have also been utilizing DP for statistical data analysis.
The U.S. Census Bureau was a pioneer in deploying DP for
governmental applications, unprecedentedly developing “On-
TheMap” [77]—an interactive mapping system for querying
residence and workplace patterns of the U.S. population.
The system provided demographic and employment data of
residents within a selected area, including occupations and
salaries, which could be queried by race, ethnicity, education,
and gender. “OnTheMap” presented the privatized statistics
based on differentially private synthetic data, which was
generated based on real census data to preserve its statistical
properties without risking the data subjects’ privacy. Following
this successful application, the U.S. Census Bureau developed
a Disclosure Avoidance System (DAS) [13], offering central-
ized DP, to guard against sensitive information disclosure in
the summary data of the 2020 Decennial Census. In one of
its deployments, the U.S. Census Bureau released statistics
about the employment of post-secondary education graduates
[78], which was released based on obtained data from the
Longitudinal Employer-Household Dynamics (LEHD) dataset
(quarterly earnings records from 50 states), the Census’s
Quarterly Workforce Indicators, and graduate records from ed-
ucation partners. Specifically, count and percentiles of earnings
per the combination of degree level, degree field, institution,
and graduation year were privatized and published. Moreover,
the U.S. Census Bureau released demographic data in its
2020 Census Redistricting Dataset [79] and the Demographic
and Housing Characteristics File (DHC), which provides in-
formation on population and household characteristics [12].
A separate differentially private version of the DHC was
published for person- and housing unit-level data, offering DP
at the citizen-level.

The U.S. Census Bureau has recently announced a novel use
case in which it has used disclosure avoidance mechanisms
to produce demonstration tables for the County Business
Patterns (CBP) data product [80]. These tables aggregated
vital economic statistics of business establishments in the U.S.,
including establishment counts, annual payroll, and employ-
ment size. Due to the skewness of the data and its heavy-
tailed distribution, per-record DP was employed, according to
which a “sliding establishment protection” was provided with
varying privacy guarantees for each establishment. In a related
effort, the U.S. Internal Revenue Service (IRS) employed DP
to release college graduate income statistics through the U.S.
College Scorecard [81], though specific implementation details
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were not publicly disclosed. This deployment was carried out
using the Tumult Analytics platform [82].

In light of the U.S. Census Bureau’s extensive use of
differentially private mechanisms, other bureau offices have
started investigating DP to protect their releases. The U.K.
Office for National Statistics (ONS) initiated a pilot study
for examining the potential of DP for mortality data statistics
as part of the 2021 UK census [83]. The Statistics Bureau
of Japan published similar intents [14], examining the utility
of DP methods for official Japanese statistical data, includ-
ing geographical data from the Japanese Population Census.
Although the Statistics Bureau of Japan did not specify the
final DP parameters used in its production implementation,
experiments with a wide range of ε values were conducted,
spanning from 0.1 to 100 [15]. The Australian Bureau of
Statistics (ABS) has implemented a customized differentially
private perturbation mechanism to the ABS TableBuilder [84],
an interactive analytic tool for the generation of count tables
based on census data. DP protection was only implemented
for a single TableBuilder counting query, but the protection
of queries under a dynamic environment is currently under
further research. Recently, Israel’s Ministry of Health released
a differentially private synthetic dataset based on the 2014 Na-
tional Registry of Live Births [85], safeguarding the identities
of mothers and newborns at a birth event-level.

Recent commercial deployments of differential privacy by
various companies in the economic domain have also begun
to emerge. In the smart energy sector, the Energy Differential
Privacy (EDC) project by Recurve-OhmConnect [18] released
residential energy consumption statistics derived from smart
meter data. Specifically, differentially private estimates of aver-
age energy load and percent load change were computed using
data from 4,948 non-solar electric meters, with a privacy unit
of a user (meter) per day. In the labor market domain, LinkedIn
applied DP to publish monthly hiring statistics segmented by
industry and region, supporting labor market analysis during
the COVID-19 pandemic [86]. Additionally, LinkedIn released
differentially private data on in-demand skills for top trending
jobs to assist job seekers in career planning.

In 2024, LinkedIn introduced a privacy-preserving approach
using Randomized Response to preserve local DP while re-
leasing U.S. race and ethnicity data [87]. This initiative aims
to enhance AI fairness by enabling comparisons of system
performance across demographic groups, particularly when
race and ethnicity data are limited. To achieve this, LinkedIn
developed the Privacy-Preserving Probabilistic Race/Ethnicity
Estimation (PPRE), which combines the Bayesian Improved
Surname Geocoding (BISG) model with self-reported de-
mographic data. DP was enforced by applying randomized
response to users’ self-reported race values, creating a privacy-
preserving dataset of race probabilities.

VI. A COMPARISON OF DP CONFIGURATIONS: ACADEMIC
RESEARCH VS. INDUSTRY

A. High-Level Comparison Between DP Configurations
While academic research and commercial applications of

DP share common algorithmic foundations, their final config-
urations often diverge in practice (Figure 1). We can deduce

that academic studies often adopt a more conservative range
of ε values, in contrast to the wider variability seen in
industrial implementations. This divergence in the range of
chosen ε values is evident across both complex analytical
tasks and traditional descriptive statistical analyses, such as
histogram computations. For instance, academic studies have
commonly used small privacy budgets ranging from 0.05 to
0.2 for differentially private histogram releases (i.e., counting
queries) [88]. In contrast, similar types of histogram analyses
conducted by industry actors such as Google [10], [11], [75]
and Apple [7] have used significantly higher privacy budgets,
with values reaching up to 8 in the case of Apple’s web-
site autoplay count release [7]. Similar discrepancies appear
in smart energy applications: while empirical research has
configured DP with ε values ranging from 0.1 to 2 [89],
[90], industrial deployments such as the Recurve project have
used substantially higher budgets, with ε = 6.8 [18] per day,
thereby offering weaker formal privacy guarantees.

Examining the DP configuration trends (in terms of ε) over
the last 5 years (Figure 1), we identified several noteworthy
patterns. First, academic research on differential privacy has
consistently adopted strong privacy guarantees, with privacy
loss budgets commonly in the range 0.05 ≤ ε ≤ 5 with a
median of ε = 0.1 (S.D.= 2.5). Second, a notable divergence
is observed in the configurations employed by commercial and
governmental/non-profit organizations. Commercial organiza-
tions have deployed ε values ranging from 0.5 to 10 (median
is ε = 2.7; S.D.= 7.5), with most configurations offering DP
guarantees over a temporal scope (e.g., per day or per month).
In contrast, government agencies and non-profits have used
significantly larger ε values for large-scale statistical releases
(median is ε = 5.8; S.D.= 13.7), with the U.S. Census
Bureau allocating a notably high ε = 35.62 for the County
Business Patterns (CBP) dataset [80]. Moreover, both sectors
exhibit a trend of increasing ε values over time, aiming to
support more complex or frequent data analyses by relaxing
privacy constraints. As organizations in the future will report
more deployments, a more accurate trend could be obtained
over time, particularly among governmental agencies, where
adoption of DP for new census analysis may be slower than
in commercial companies.

B. Reasoning Behind DP Configuration Differences

We analyzed the surveyed papers and industry reports to
identify the reasons behind selected DP configurations (pri-
marily ε), that can explain the distinct configuration choices
observed in academic research and industrial deployments
(Table III). While the majority of our surveyed academic
papers (59%) and a large portion of commercial deployments
(25%) did not provide any justification for their choice of
DP parameters, the rest deliberated on their selection choices.
In academic research, ε values were often chosen arbitrar-
ily or guided by best practices from prior literature, e.g.,
stating that “typically, ε ≤ 0.1 is considered strong and
ε ≥ 10 is considered weak” [94]. Only 6% of academic
papers provided goal-oriented rationales, selecting parameters
to meet predefined utility or privacy requirements. Most of
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TABLE III
DISTRIBUTION OF JUSTIFICATION TYPES FOR DP CONFIGURATION SELECTION IN ACADEMIC RESEARCH AND COMMERCIAL (COMM.) OR

GOVERNMENTAL/NON-PROFITS (GOVT./NP) PRACTICE. PERCENTAGES (IN PARENTHESES) INDICATE PROPORTION OF COUNTS FROM TOTAL.

Justification type Examples
Comm.

(n = 32)
Govt./NP
(n = 10)

Academic
(n = 81)

No justification –“Without explanation, we set w = 200 and ε = 1 for all experiments.” [91] 8 (25%) 2 (20%) 48 (59%)
Arbitrary (unsubstanti-
ated reasoning)

–“From the definition a choice of ε ≤ 1 seems reasonable.” [92]
–“ε is uniformly randomly drawn from E1 = {0.25, 0.5, 0.75}....” [93]

13 (16%)

Community best practice –“Typically, ε ≤ 0.1 is considered strong and ε ≥ 10 is considered weak.” [94]
–“Considering past real-world differentially private releases as a benchmark, we
aimed to a total privacy loss budget of ε < 10...” [85]

6 (19%) 1 (10%) 12 (15%)

Privacy/utility trade-off
tuning

–“The Vaccination Search Insights are designed to maintain the privacy of our
users while releasing [...] data that is as accurate and useful as possible.” [10]
–“We managed to obtain a significantly better model, while ensuring that users’
data stays private.” [67]

9 (29%) 3 (4%)

Predefined privacy/utility
constraints

–“[...] ε was determined stochastically to achieve [...] 1% error...” [18]
–“We take a utility-first approach, as the end application requires an average
relative weighted error of ≈ 3% to be useful” [70]

5 (15%) 4 (40%) 5 (6%)

Policy, regulatory, or eth-
ical compliance

–“[...] we adhere to strict policy regarding the privacy budget.” [95]
–“The TDA parameters for the published [...] data were primarily policy-driven.
In setting these parameters, the agency had to consider and balance its
countervailing obligations to produce high-quality statistics while also
protecting the confidentiality of census respondents...” [12]

4 (12%) 3 (30%)

these cases were observed in specific empirical applications,
such as smart energy metering, where utility is critical due
to the risks of inaccurate consumption data, which can result
in inflated bills (e.g., “[...] using a utility requirement of 5%,
the achieved privacy level is...” [96]). This type of justification
was also observed among 40% of the surveyed deployments
by governmental and non-profit organizations.

In contrast to academic research, 29% of the surveyed
industrial deployments provided more concrete justifications,
often grounded in empirical analysis of utility versus privacy
objectives. This reflects practical considerations in which DP
configurations are shaped by privacy-utility trade-offs [20],
where parameters are selected to balance analytical utility
and privacy risk. Hence, organizations tend to orient their
choices of ε around one of three strategies: utility-focused,
privacy-focused, or a balanced approach. For instance, the
Wikimedia Foundation adopted a utility-oriented approach,
selecting parameters to “optimize the global utility metrics”
[60]. The U.S. Census Bureau initially emphasized privacy
in the release of employment statistics, requiring that data
“not include personally identifiable information” [78], but later
transitioned to a more utility-focused approach in its 2020
redistricting data release, developing the Disclosure Avoidance
System (version 12.2) which “represents a relatively high
privacy loss [...] at the expense of greater privacy loss...” [79].
Other commercial organizations, such as Recurve, prioritized
privacy, “erring on the side of caution” [18] when setting ε.
In contrast, LinkedIn presented a more balanced approach,
noting that their differentially private algorithms “have better
accuracy and privacy tradeoffs” [63].

Moreover, 12% of surveyed commercial deployments and
30% of the governmental deployments described a compli-
ance with policy, regulation, or ethical guidelines as their
primary motivation for the selected DP configuration. These
policies may be internal to the company or external regulations
with which organizations must comply (such as GDPR or

the United States Code). For example, Microsoft’s Privacy-
Preserving Machine Learning (PPML) policy limits privacy
loss to ε = 4 over six months for any contributing user
[95]. Similarly, as a governmental body that is subject to
the public transparency, the U.S. Census Bureau similarly
justified its Post-Secondary Employment Statistics release by
stating that “In carrying out the public reporting and disclosure
requirements of this Act (Title 13 of the U.S. code), the Com-
missioner shall use appropriate statistical disclosure limitation
techniques necessary to ensure that the data released to the
public cannot include personally identifiable information....”
[78]. A similar proportion (19%) of deployments cited commu-
nity best-practice approaches informed by prior deployments.
For example, Apple provided a partial justification for all
of its deployments stating that “Our choice of ε [...] these
values are consistent with the parameters proposed in the [...]
research community” [7]. Similarly, the Israeli Ministry of
Health justified its configuration for live births data using
precedents from prior industry releases: “Considering past
real-world differentially private releases as a benchmark [53],
we aimed to a total privacy loss budget...” [85]).

The observed rationales suggest several possible explana-
tions for the differing choices of ε values. First, community
best practices shape parameter choices differently in com-
mercial, governmental or academic settings. These differences
results in distinct configuration norms. Academic research on
DP initially focused on theoretical work, where the choice of ε
was often arbitrary or guided by research community practices
rather than rigorous justification, motivating their choice of
smaller εs. It later expanded to applied studies that adopted
empirical methodologies and used a wider range of ε values,
especially in recent years (Figure 1). In contrast, industry
organizations used prior deployments or policies from simi-
lar organizations as benchmarks, such as Microsoft’s PPML
policy [95], which adopts a higher privacy budget of ε = 4.
Second, in contrast to academic research which deals with
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relatively small and static datasets, commercial deployments
tend to process much larger data volumes continuously over
time (e.g., telemetry analysis by Microsoft [8] collects data
daily). Although privacy loss is often capped per time unit
(e.g., per user per day), the cumulative effect leads to higher
overall budgets (weaker privacy guarantees) than in non-
temporal use cases. Moreover, many commercial deployments
adopt local DP, with user-specific ε values assigned by the data
processor rather than the user. This contrasts with academic
research, which typically employs central DP setups with
markedly different ε choices. Specifically, deployed ε values
were significantly higher in local DP deployments (12 cases)
than in central DP deployments (38 cases; U = 306.5,
p < .05). This observation is consistent with previous literature
[23] that suggests that local models require higher εs to
mitigate the greater noise added individually by users.

C. Examples of DP Configuration Shifts from Research to
Commercial Deployment

Several cases exist where the same entity contributed to
both an academic publication and a commercial deploy-
ment, offering an opportunity to demonstrate the differences
between academic research and commercial configurations.
These differences may be attributed to the need of commercial
organizations to adapt DP configurations when transitioning
from research to practice, in response to operational demands,
regulatory constraints, and internal policies that directly in-
fluence configuration choices [97]. For example, Microsoft’s
research team developed the Differentially Private Set Union
(DPSU) algorithm that constructs a large subset of the union of
user-contributed sets, enabling efficient selection of frequent
items under user-level DP. The DPSU algorithm was employed
to construct differentially private n-gram histograms from
user-generated text, enabling the identification of frequent
phrases to train a reply suggestion model for Microsoft Office
services (i.e., emails and messages) [65]. The algorithm was
evaluated under a user-level (ε, δ)-DP guarantee using ε values
ranging from 0.5 to 4 with ε = 3 and δ = 10−10 as the
representative setting. However, the deployed configuration by
the same research team at Microsoft used ε = 4, representing
the upper bound of the tested range and the maximum al-
lowed budget under Microsoft’s Privacy-Preserving Machine
Learning policy [95]. In addition, δ was relaxed to 10−7. In
this case, moving from research to commercial deployment
involved increasing the privacy budget from ε = 3 in research
experiments to ε = 4 in the deployed product, resulting in a
degradation of the privacy guarantees by 33%.

Google’s deployment of DP in the Google Trends tool using
the DP-SQLP streaming framework [57] illustrates a distinct
narrative within deployment practices. Initially, the release
of private histograms from simulated user activity using DP-
SQLP was evaluated under a user-level (ε = 6, δ = 10−9)-
DP. However, during deployment of that framework for the
Google Trends tool, the configuration was tightened: each
query was processed under ε = 2, δ = 10−10, and users
were limited to one contribution per query. An additional pre-
threshold of 50 unique users was applied before noise was

added, excluding low-frequency queries, thereby providing
stronger privacy guarantees than in the experimental setup.
This choice of a lower ε in deployment was driven by
practical privacy constraints for user-level protection in a
production environment, which involves a continuous stream
of sensitive and diverse real-user data (e.g., search queries
related to medical conditions). Since each query incurs ε = 2,
repeated user contributions lead to accumulating privacy loss
via composition. This necessitates a tighter control over the
privacy loss budget, particularly for low-frequency Google
Trend queries that pose greater privacy risks to users.

VII. DISCUSSION

As no “silver bullet” guidelines exist for selecting ε, this
survey highlights the diversity of DP configurations in practice
and examines the underlying rationales. This section discusses
key findings and proposes directions for future research.

A. Key Limitations and Gaps in Commercial and Governmen-
tal DP Configurations

1) Limited Transparency of DP Configuration Details: Due
to the lack of a unified knowledge base for DP implementa-
tions [19], we manually extracted configuration details from
various sources, revealing transparency issues in reporting of
privacy parameters, such as ε and δ. First, as our analysis of
practical justifications for privacy parameter selection revealed,
59% of academic papers and 25% of commercial deployments
provide no justification for their DP configurations. Second,
the absence of standardized terminology in reporting DP
configurations and implementation details hindered the precise
extraction of DP parameters. Specifically, details of the em-
ployed privacy protection unit were partially deduced from the
text and were post-processed to measure protection in similar
units to those used in other implementations. For example,
each count query to LinkedIn’s labor marketing system [86]
covered three months of data, but statistics were published
monthly, and hence the privacy guarantees were reported for
a single month. Second, a difference in reporting of (ε, δ)
values was observed for use cases implementing different
DP variants. For example, in zero-concentrated DP (zCDP),
guarantees are expressed using the ρ parameter but can be
converted to the standard (ε, δ)-DP parameters (according to
[44]). This may create a gap in perception of the provided
privacy guarantees since the scale of parameter values can vary
across DP definitions, e.g., ρ = 0.48-zCDP with δ = 10−10 is
translated to (ε = 6.83, δ = 10−10)-DP. Apart from difficulty
in reproducibility, the lack in transparency can also have an
effect on the reputation of organizations and create incredulity,
which may reduce the willingness of potential data subjects
to share personal data.

To mitigate the aforementioned transparency issues in the
context of DP, privacy “Nutrition Labels” [98] can be used,
similar to “fact box” visualizations in healthcare that are often
used to simplify complex tabular data. Originally proposed
for privacy policy communication, these labels provide clear
privacy guarantees and facilitate easier access to policy infor-
mation for data consumers. Moreover, data practitioners im-
plementing DP can use such labels to compare DP parameters
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between implementations, specifically the parameters of ε and
δ. A possible direction for future work is to expand privacy
labels to convey more detailed DP guarantees and tailor them
for data practitioners with varying levels of DP expertise.

2) No User-Oriented DP Configurations: We found no
evidence of DP implementations where data subjects shared
their personal privacy preferences with data processors. As
a result, current DP configurations reflect only organizational
definitions of privacy, which may not align with individuals’
expectations. When data provision is mandatory, such as in
national censuses, individuals lack control over its use, leading
to a mismatch in privacy perception. In contrast, opt-in models
enable user-defined privacy preferences. For example, Apple’s
local DP implementation [7] could, in principle, let users
control the ε value for noise addition. However, identifying
relevant preferences and integrating them into differential pri-
vacy remains a key challenge and avenue for future research.

B. ε as a Hyper-Parameter or a Deliberate Design Choice
Our analysis highlights distinct approaches to selecting ε

and δ in academic versus commercial or governmental settings,
reflecting differing priorities and methodological paradigms.
Based on our surveyed academic research papers, we conclude
that the majority of research treats ε (and also δ) as a hyper-
parameter, i.e., an external configuration variable which is not
learned from the data or model itself and is set prior to the
analysis process. This approach can be problematic, as the final
configuration may be biased by the initial selection, potentially
unsupported by the data or task requirements. Such biases
can carry over into real-world deployments when academic
research is applied in practice. Therefore, this underscores the
need for a context-aware approach when selecting DP parame-
ters, as aligning privacy budgets with social norms can lead to
more appropriate configurations [99]. For example, the same
privacy configuration may be appropriate in a commercial app
but unacceptable in a government census.

In contrast to academic work, commercial and governmental
deployments treat DP parameters as deliberate design choices,
integrating them into the core system architecture. In such de-
ployments, ε, δ, and the noise mechanism were selected based
on task-specific needs, requiring organizations to carefully
balance privacy and utility. Several deployments in our survey
explicitly acknowledged this trade-off [20] in their parameter
choices. For example, LinkedIn applied a privacy-by-design
approach in its race and ethnicity estimation system, stating
that “the measurement test must have privacy by design at
its core” [87], selecting ε = 4.5 to ensure that “information
must be comprehensive and useful enough to enable equal
treatment measurements with respect to race and ethnicity
at the aggregate level” [87]. This highlights the need for
increased transparency and a structured framework for DP
configuration, as proposed by Dwork et al. [19], who advocate
for an Epsilon Registry to document implementation choices
and guide practitioner decision-making.

C. Standardization of the DP Configuration Process
As indicated by a recent study by Sarathy et al. [100],

organizations frequently turn to trial-and-error approaches in

selecting DP parameters, highlighting the ongoing challenges
in establishing principled DP configurations. Given these
challenges, a structured approach to configuring DP may
be beneficial, drawing on similar frameworks from machine
learning [101] and cybersecurity [102]. Just as ML models
undergo testing and refinement to improve robustness against
adversarial attacks, DP configurations might benefit from
similar iterative adjustments to strengthen protection against
inference risks while maintaining utility. A potential workflow
for configuring DP could involve five key steps: Defining
the target data analysis, Specifying privacy guarantees, DP
operationalization, Evaluation, and Documentation.

This process can begin with defining the data analysis
in terms of expected outputs and duration, which influences
privacy budget allocation. Consequently, the data processor
can define the privacy guarantees, taking into account factors
such as potential privacy risks, the protected privacy unit, and
the DP mechanism applied. This step helps clarify the level
of privacy protection provided. The operationalization phase
would then involve setting DP parameters: privacy budget (ε),
failure probability (δ in (ε, δ)-DP), and other loss parameters
(such as ρ in ρ-zCDP). Once these parameters are config-
ured, evaluation becomes important to ensure that the chosen
approach aligns with both data subjects’ privacy expectations
and organizational policies. This evaluation typically considers
the privacy-utility trade-off, measuring privacy protection (e.g.,
probability of privacy breaches) relative to predefined utility
metrics (e.g., accuracy). If necessary, adjustments can be
made iteratively to refine the balance between these two
factors. Finally, documenting the configuration could serve as a
reference for future analyses, supporting the broader idea of an
Epsilon Registry [19] for benchmarking DP implementations.

VIII. CONCLUSIONS

Differential Privacy (DP) has seen growing adoption in
both academic research and industry, supporting large-scale
data analysis while providing strong privacy guarantees for
involved users. This survey presented a systematic literature
review of recent deployments of DP for applications by
commercial and governmental organizations, and compared
their DP parameters with corresponding academic research.
Our analysis reveals that National Statistical Offices, such as
the U.S. Census Bureau, have used a wider range of privacy
budget values, reflecting growing demand for public data
releases and more flexible DP configurations. On the other
hand, commercial companies reflected a different privacy-
utility orientation in their DP configurations, allocating ε
values over a narrower range for different use cases. In con-
trast to commercial or governmental deployments, academic
research on DP has consistently used lower ε values, often
following community best practices that recommend ε ≤ 1.
By expanding the current knowledge on DP applications
and their challenges, our analysis supports data practitioners
and policymakers in benchmarking DP configurations and
advancing the vision of a unified Epsilon Registry for practical
DP configurations.
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APPENDIX

TABLE V
SURVEYED DP APPLICATIONS IN ACADEMIC, COMMERCIAL, AND

GOVERNMENTAL/NON-PROFIT SETTINGS.

Reference Year Setting Data size
(×103)

Employed ε

Chaudhuri et al. [49] 2008 Acad. 17.5 [0.01, 0.2]
Machanavajjhala et al. [77] 2008 Govt. 1500 8.6
Korolova et al. [115] 2009 Acad. 490 ·103 [0.7, 2.3]
Vu et al. [116] 2009 Acad. 10 [0.05, 0.5]
Kodeswaran et al. [117] 2009 Acad. 15000 [0.01, 2]
McSherry et al. [94] 2010 Acad. 16 · 106 [0.1, 10]
Bhaskar et al. [118] 2010 Acad. 990 [0.12, 2.6]
Pathak et al. [119] 2010 Acad. 48.9 [0.01, 0.4]
Machanavajjhala et al. [120] 2011 Acad. 103.7 [0.5, 3]
Chen et al. [121] 2011 Acad. 1210 [0.5, 1.5]
Cormode et al. [122] 2011 Acad. 1630 [0.1, 1]
Bonomi et al. [123] 2012 Acad. 150 [0.01, 10]
Narayan et al. [124] 2012 Acad. 32 0.69
Chen et al. [125] 2012 Acad. 1000 1
Ács et al. [89] 2012 Acad. N/A 1
Xiao et al. [88] 2012 Acad. 49 [0.05, 0.2]
Li et al. [126] 2012 Acad. 15000 [0.1, 2.5]
Vinterbo et al. [127] 2012 Acad. N/A 2.037
Mohammed et al. [128] 2012 Acad. 49 [0.1, 1]
Chaudhuri et al. [129] 2013 Acad. 494 [0.01, 2]
Uhlerop et al. [130] 2013 Acad. 40.84 [0.1, 0.4]
Andrés et al. [131] 2013 Acad. 10 [0.01, 15]
Wang et al. [132] 2013 Acad. N/A [18.4, 4474]
Backes et al. [133] 2013 Acad. N/A [0.18, 0.5]
Fredrikson et al. [21] 2014 Acad. 2.64 [0.25, 100]
Erlingsson et al. [32] 2014 Comm. 14000 25.63
Fan et al. [134] 2014 Acad. 990 [0.01, 1]
Lu et al. [135] 2014 Acad. N/A [0.1, 1]
Shen et al. [136] 2014 Acad. 229.9 [1, 3]
Xiao et al. [137] 2015 Acad. 6442.9 [0.2, 1]
Li et al. [138] 2015 Acad. N/A 1
Han et al. [139] 2015 Acad. 40 [7, 15]
Phan et al. [140] 2016 Acad. 15.6 [0.1, 6.4]
Wang et al. [91] 2016 Acad. 1710.7 [0.1, 1]
Lin et al. [141] 2016 Acad. 4300 [0.1, 0.6]
Chen et al. [93] 2016 Acad. 1634.5 [0.25, 1.25]
Shen et al. [142] 2016 Acad. 1000.2 [0.1, 1]
Nguyen et al. [143] 2016 Acad. 9000 [0.05, 0.8]
Barbosa et al. [96] 2016 Acad. 4.46 [0.001, 1.08]
Qin et al. [144] 2017 Acad. 183.8 [0.01, 7]
Ding et al. [8] 2017 Comm. 3000 1.67
Yin et al. [145] 2017 Acad. 2 [0.005, 15]
Chen et al. [146] 2017 Acad. 48.8 [0.1, 1]
Eibl et al. [92] 2017 Acad. 14.05 [0.1, 2]
Bittau et al. [147] 2017 Acad. 10000 [1.2, 2.25]
Xiong et al. [148] 2018 Acad. 990 [0.1, 1]
Zhu et al. [149] 2018 Acad. 103.7 [0.1, 1]
Lyu et al. [150] 2018 Acad. 51 [0.5, 1]
Khavkin et al. [151] 2018 Acad. 1000 0.01
Fan et al. [152] 2018 Acad. 60 [0.1, 1]
Kim et al. [153] 2018 Acad. 1000 [0.98, 3.63]
Choi et al. [154] 2018 Acad. 5 [0.5, 1]
Asada et al. [155] 2019 Acad. 36001 [0.001, 0.01]
Wilson et al. [156] 2019 Acad. N/A [0.25, 1]
Zhao et al. [157] 2019 Acad. 989.8 [1, 4]
Sadilek et al. [69] 2019 Comm. 300 ·103 0.66
Foote et al. [78] 2019 Govt. 372455 3
Bailie et al. [84] 2019 Govt. 23401.9 0.693
Fernandes et al. [158] 2019 Acad. 797 [10, 30]
Wang et al. [159] 2019 Acad. 546.4 [0.5, 3]
Steil et al. [160] 2019 Acad. 11.4 [1, 70]
Helmer et al. [54] 2019 Comm. N/A N/A
Cho et al. [161] 2020 Acad. N/A [0.05, 2]
Lee et al. [162] 2020 Acad. 1361 [0.1, 1]
Ou et al. [90] 2020 Acad. N/A [0.1, 2]
Chamikara et al. [163] 2020 Acad. 202.6 [0.5, 8]
Aktay et al. [11] 2020 Comm. N/A 2.64
Bavadekar et al. [75] 2020 Comm. 2700 1.68

Reference Year Setting Data size
(×103)

Employed ε

Microsoft Research [65] 2020 Comm. 100 ·103 0.022
Messing et al. [64] 2020 Comm. 38000 1.453
Herdağdelen et al. [108] 2020 Comm. 6950 2
Paré et al. [18] 2020 Comm. 4.95 6.8
Wang et al. [164] 2020 Acad. 1200 [1, 9]
Sun et al. [165] 2020 Acad. 32.7 [0.8, 20]
Johnson et al. [72] 2020 Comm. N/A N/A
Lin et al. [166] 2021 Acad. N/A [0.1, 1]
Bavadekar et al. [10] 2021 Comm. 1500 2.19
Pereira et al. [17] 2021 Comm. 32.65 0.2
Kenny et al. [79] 2021 Govt. 330 ·103 19.61
Apple Research [76] 2021 Comm. N/A 8
Qian et al. [167] 2021 Acad. 27.7 [0.27, 2.94]
Yue et al. [168] 2021 Acad. 70.04 [0.5, 20]
Cunningham et al. [169] 2021 Acad. 33278 5
Google Research [67] 2021 Comm. N/A N/A
Adeleye et al. [60] 2022 Comm. 325 ·106 0.998
Apple Research [7] 2022 Comm. 100 ·103 [2, 8]
Han et al. [170] 2022 Acad. 573.7 [1, 9]
Rogers et al. [16] 2022 Comm. 690 ·103 34.90
Rogers et al. [86] 2022 Comm. 50000 9.7
Spectus [74] 2022 Comm. 6800 10
Chen et al. [171] 2022 Acad. 62.5 [1, 10]
Gopi et al. [109] 2023 Comm. 17 12
Sadilek et al. [80] 2023 Govt. 128 ·103 35.62
Abowd et al. [12] 2023 Govt. 330 ·103 [26.3, 34.3]
Chen et al. [172] 2023 Acad. N/A [0.1, 10]
Sun et al. [173] 2023 Acad. 50 [0.1, 2]
Xu et al. [174] 2023 Acad. 1220 [3.90, 9.67]
Xu et al. [56] 2023 Acad. 3000 [0.99, 6.82]
Chen et al. [175] 2023 Acad. 60 N/A
Acharya et al. [176] 2023 Acad. 9000 [2, 6]
Hu et al. [177] 2023 Acad. 60 [0.1, 16]
Keeler et al. [178] 2023 Acad. 1000 [0.025, 0.8]
Wikimedia Foundation [61] 2023 Govt. 3.5 2
Wikimedia Foundation [62] 2023 Govt. 30 0.1
Apple Research [59] 2023 Comm. 4500 1
Bian et al. [70] 2024 Comm. 4000 2
Zhang et al. [57] 2024 Comm. 22280 1
Zhang et al. [57] 2024 Comm. 22280 2
Badrinarayanan et al. [87] 2024 Comm. 20000 4.5
Hod et al. [85] 2024 Govt. 165.9 9.98
Batool et al. [179] 2024 Acad. 1258 [0.001, 2]
Qashlan et al. [180] 2024 Acad. 2 · 106 [0.001, 103]
Novado et al. [181] 2024 Acad. 1000 [1, 8]
Ju et al. [182] 2024 Acad. 10.4 [1, 5]
Shanmugarasa et al. [183] 2024 Acad. 150 [1, 20]
Agrawal et al. [184] 2024 Acad. 1565.9 [1, 1000]
Sun et al. [105] 2024 Acad. 1000 10
Xu et al. [107] 2024 Comm. N/A [6, 13]
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