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Analyzing and Optimizing Access Control Choice Architectures
in Online Social Networks

RON HIRSCHPRUNG, ERAN TOCH, HADAS SCHWARTZ-CHASSIDIM,
TAMIR MENDEL, and ODED MAIMON, Tel Aviv University

The way users manage access to their information and computers has a tremendous effect on the overall
security and privacy of individuals and organizations. Usually, access management is conducted using a
choice architecture, a behavioral economics concept that describes the way decisions are framed to users.
Studies have consistently shown that the design of choice architectures, mainly the selection of default
options, has a strong effect on the final decisions users make by nudging them toward certain behaviors.
In this article, we propose a method for optimizing access control choice architectures in online social
networks. We empirically evaluate the methodology on Facebook, the world’s largest online social network,
by measuring how well the default options cover the existing user choices and preferences and toward which
outcome the choice architecture nudges users. The evaluation includes two parts: (a) collecting access control
decisions made by 266 users of Facebook for a period of 3 months; and (b) surveying 533 participants who
were asked to express their preferences regarding default options. We demonstrate how optimal defaults can
be algorithmically identified from users’ decisions and preferences, and we measure how existing defaults
address users’ preferences compared with the optimal ones. We analyze how access control defaults can
better serve existing users, and we discuss how our method can be used to establish a common measuring
tool when examining the effects of default options.
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1. INTRODUCTION

Human factors influence how end-users interact with cyber-security systems and are
the cause of many successful cyber-attacks [Dutt et al. 2013]. While cyber-security tech-
nologies provide a powerful technical solution, users’ failure to comply with security
guidelines is the cause of the majority of breaches in enterprise computing [Pfleeger
et al. 2014; Deloitte 2013]. An important way in which users profoundly affect cyber
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security is by managing access to information and resources in a large variety of sys-
tems [Benantar 2006]. For example, making bad access control decisions in firewalls
can allow access to internal organization networks [Wool 2004] or make one vulnerable
to privacy threats when browsing the Web [Friedman et al. 2002]. In another example,
bad access control decisions on Facebook can lead to over-sharing of personal informa-
tion that can jeopardize the user’s privacy [Madejski et al. 2012]. Access management
is conducted using a choice architecture, which is a concept from behavioral economics
that describes the way decisions are framed to users, that is, how they are presented,
designed, and explained to users.

Research in behavioral economics has repeatedly shown, both experimentally [Thaler
and Sunstein 2008; Adjerid et al. 2013; Knijnenburg et al. 2013a; Korff and Böhme
2014] and observationally [Palen 1999; Stutzman et al. 2013], that the way default
options are selected in the choice architecture has a profound effect on users’ ongoing
behavior, nudging users toward specific choices. In response, default options are in-
creasingly gaining the attention of regulators and legislators, who attempt to regulate
choice architectures in online services. For example, a California bill (which did not
pass) required that Online Social Networks (OSNs) establish a default privacy setting
that prohibits the display of most personally identifiable information [California Bill
2011].

Policy makers and technology designers look at a problem such as defaults in OSNs
in a very different way. Lawmakers use societal terms to suggest specific values that
should influence or dictate design, promoting privacy and security [EU Directive 2002,
2011; California Bill 2011]. On the other hand, many system designers invoke basic
usability principles and other values, such as information sharing, to justify specific de-
signs [Buchanan 2011]. Balancing opposing values in a value-sensitive design process
[Friedman et al. 2002, 2013] can take many forms, but it first requires some common
language and assumptions to be handled correctly. In light of the growing awareness
to the effect of the choice architecture on users’ decisions and the overall privacy and
security of the system, it has become crucial to better understand how systems’ choice
architectures serve the preferences of their users and the effect the architecture has
on usability. This understanding is particularly important in rich choice architectures,
where users make decisions constantly about how to share their information. The
richness of the access control choice architecture varies between social networks and
systems, from a binary choice of public or private (such as in Twitter) to nuanced con-
trol over each post (such as in Facebook or LinkedIn). This study takes an empirical
and algorithmic approach, describing analysis evaluation methods and testing them
on real-world data in rich choice architectures.

To evaluate choice architectures, this article suggests measuring the usability cover-
age of the default options. The definition of usability coverage is based on the observa-
tion that the system’s choice architecture provides some social welfare to the population
of users. A social welfare function ranks common alternatives (such as different sets
of default options) in the system [Sen 1970], and in our case, it is interpreted as the
proportion of users who would find at least one usable option to be satisfactory. To
apply this concept, usability coverage is measured in two ways: in retrospect, by ana-
lyzing how real users have employed choices over time, and by asking users to indicate
their preferences. Alternatively, we discuss how our method can be used by eliciting
the preferences of individuals who did not use the system in the past. We collected
previous choices that were made by users and current preferences of people and test
how well an existing choice architecture complies with those choices and preferences
(the usability coverage). We examined the gap between the usability coverage of the
existing choice architecture and that of the optimal choice architecture. We also tested
how usability coverage changes over time. Finally, we measured the bias the system
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Fig. 1. Two examples of user interfaces for access control: The left screenshot (a) shows Facebook’s privacy
control user interface, which is used to decide the audience for a published post. The user can select one of
the displayed options, which include Public, Friends and Only-Me. The user can also abandon the default
options by selecting Custom and decide the audience using fine-tune settings. The right screenshot (b) shows
the Safari web browser privacy settings. These settings are configured by default when the application is
installed. By using this interface, the user can manually set authorizations to use cookies and location
services.

applies to its choice architecture by estimating whether the system nudges users to
disclose more or less information.

To empirically test our method, we examined actual privacy settings for 266 Facebook
users who published a total of 21,950 posts, and we surveyed 533 participants who
were asked to elicit their preferred set of default options. Facebook was chosen as our
research case study because it provides a rich interface to manage fine-grained access
control (see Figure 1(a)) and is an information-sharing framework in which users are
active in managing their privacy [Stutzman et al. 2013]. The findings of this research
describe how access control choice architectures can be improved to maximize the
users’ social welfare. Our results from both user studies show that usability coverage
can be used as an intelligent tool in analyzing choice architectures, determining how
they contribute to the experience of existing users, how they perform over time, and in
which way they nudge their users. We end the article by discussing how our methods
can be used as a design and regulation tool and how choice architectures can be used
to enhance the security and usability of information systems.

2. BACKGROUND

Our work was inspired by scholarly research on access control decision-making and
behavioral biases. In the following sections, we relate each field to our study.

2.1. Decision-Making in Access Control

The disclosure of sensitive data can be initiated by the user (like in OSNs) or by the
system (like in cyber-security mechanisms). Cyber-security systems regularly monitor
network traffic, device use and personal communications in order to cope with a variety
of vulnerabilities (e.g., intrusion detection, malware detection, data leakage prevention,
and phishing identification). However, these cyber-security mechanisms raise a new
challenge: balancing cyber-security risks against privacy and civil liberties concerns
[Thang and Nguyen 2016; Landau 2014]. Thus, privacy concerns might reduce the
acceptance and use of cyber-security systems by organizations and individuals, leading
to decreased security for everyone’s activities [Pfleeger et al. 2014; Warkentin and
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Willison 2009]. An access control mechanism can provide the user a way to balance
privacy disclosure vs. social benefits and security.

How are access control decisions conducted? In many online services, the answer to
this question depends on the context of the information, resource sharing, and the in-
teraction model of the users with the services. In a growing number of online services,
users are offered a high level of control by using sophisticated access controls. Generally
speaking, access control is the selective restriction of access to a place, information or
other resource, based on a formal model that describes the type, characteristics, desti-
nations and extent of information disclosure [Sandhu et al. 1996]. The basic mechanism
of access control is similar for many types of information security system scenarios, in-
cluding access to physical objects and places [Bauer et al. 2005], firewall management
[Wool 2004], browser cookie management [Friedman et al. 2002], and OSN sharing
[Madejski et al. 2012].

However, the usability of access control mechanisms in modern distributed systems
has been widely criticized, mainly because of the limited technological literacy of the
average user and the significant effort required on the user-side to determine how to
implement the desired access rules [Tolone et al. 2005; Moyer and Abamad 2001]. This
phenomenon is an outcome of the reality that most users are not experts at this task
and that access management actions are almost always secondary to the collaborative
task at hand [Cao and Iverson 2006].

Access control decision-making is conducted in the presence of uncertainty, where
the benefits and probability of harm are weighted against each other [Dinev and Hart
2006]. Uncertainty inherently complicates any decision-making process, making it
prone to human biases [Kahneman and Tversky 1979]. Behavioral economics research
shows that choice architecture, the way choice alternatives are framed and contextual-
ized, significantly and strongly affects the actual user’s choices. For example, users tend
not to change their initial calendar-sharing options [Palen 1999], decisions on receiv-
ing electronic mail from Websites [Johnson et al. 2002], retirement plans [Madrian and
Shea 2000], or even decisions regarding organ donation [Johnson and Goldstein 2003].

Default choices play on people’s tendencies to stick to the status quo, and therefore,
if sharing is the default, people will tend to share more [Schweitzer 1994; Smith et al.
2013]. Additionally, defaults can be considered to be the service’s official or unofficial
recommendation, pushing users toward a particular choice [Sher and McKenzie 2006;
McKenzie et al. 2006]. Research on privacy has shown that users’ decisions in disclosing
information can be affected by the wording of the options [Adjerid et al. 2013; Staddon
et al. 2013] and by the number and granularity of the choices [Knijnenburg et al. 2013a,
2013b].

Several studies have shown the potential of reconstructing default options to improve
privacy decision-making and to reduce the user’s burden. For example, algorithms for
finding defaults for location sharing applications were evaluated by Ravichandran
et al. [2009], and clustering-based algorithms were suggested by Toch et al. [2010] and
Hirschprung et al. [2015]. Knijnenburg and Kobsa [2014] experimentally evaluated
different default options, showing how users’ sharing tendency can be increased without
increasing their privacy concerns. However, to the best of our knowledge, there were no
works that aimed at evaluating and optimizing the default options of existing systems
that have an existing user base. Analyzing existing user behavior raises new challenges
in understanding the interaction between users’ decisions and the context in which they
are made, challenges we aim to address in this article.

To demonstrate the place of choice architecture in access control, let us look at
two examples. Figure 1(a) depicts Facebook’s privacy controls, which allow users to
control the audience for a published post. This interface allows users to choose who
will have access to a specific piece of information by choosing among a small set of
possibilities, which are ordered according to the level of sharing (Public, Friends, and
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Only-Me). If the user is not satisfied with the available possibilities, there is an option
to choose “Custom,” which provides a fine-grained configuration. Figure 1(b) depicts
the Safari web browser privacy settings. These settings are configured by default when
the application is installed. By using this interface, the user can manually set general
authorizations to use cookies, can watch the list of web sites that stored cookies in the
browser and selectively delete them, and can limit web sites from accessing location
services. The short list of initial possibilities that is presented to users comprises the set
of default options that the designers assume the users will choose from. We distinguish
between default options, which are the set of initial possibilities introduced to the user,
and the default choice, which is the predefined choice that is selected by the service if
the user does not explicitly select another choice.

2.2. Choice Architectures for Access Control

The power of default options and choices has encouraged policy-makers to regulate
those defaults to discourage or encourage certain practices by electronic services. For
example, the 2002 EU Opt-In Directive states that marketing email messages can be
sent only to recipients who have given their prior consent, thus adopting an opt-in
approach [EU Directive 2002]. Similarly, Canada’s 2010 Anti-Spam Legislation estab-
lishes that all commercial electronic messages can be sent only to recipients who have
given their prior consent [Canada’s Justice Laws 2010]. On the other hand, the United
States 2003 CAN-SPAM Act allows direct marketing email messages to be sent to any-
one, without permission, until the recipient explicitly requests that they cease, thus
allowing an opt-out approach [US Public Law 2003]. The 2011 EU Consumer Rights
Directive subjected electronic commerce websites to a regulation that bans pre-ticked
check boxes on websites for charging additional payments [EU Directive 2011]. For
example, it is now illegal for a European website to add items to consumers’ shopping
carts by default.

Attempts to regulate OSN services were even more specific in describing how privacy
defaults should be engineered. The EU Article 29 Working Party recommended that
OSN providers offer default privacy settings that restrict viewing the user’s profile to
self-selected contacts [EU Directive 1995]. The 2011 California Bill S.B. 242 goes even
further. It requires that OSNs set defaults to limit access in such a way that the users
must choose the information that is to be made public and the OSN would have to ask
users to establish their privacy settings when they register to join the site instead of
after they join [California Bill 2011]. The bill’s author, California senator Ellen Corbett,
explains the logic behind the bill [Buchanan 2011]:

“You shouldn’t have to sign in and give up your personal information before you get
to the part where you say, ‘Please don’t share my personal information.’ ”

This quotation highlights the trend in which regulation attempts to oversee the user’s
experience in OSNs and guides the interaction between the user and the service when
using the default options and choices, according to privacy values.
The response of OSNs to the bill contains language that highlights usability rather
than privacy. According to a letter sent by the Internet Alliance, a trade association
that includes Facebook and other OSN websites, the bill [Buchanan 2011]:

“would force users to make decisions about privacy and visibility of all information
well before they even used the service for the first time, and in such a manner that
they are less likely to pay attention and process the information.”

The response highlights several key issues in usability engineering: the user’s cogni-
tive state, context of use, and user knowledge at the time of the decision. In this de-
bate, privacy and usability are in direct conflict. However, to productively discuss both
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concepts together, we must define the common language that combines these concepts
as well as metrics that would provide a clear goal for effective privacy controls.

3. MODELING ACCESS CONTROL MECHANISMS

3.1. Access Control Evaluation

An access control mechanism usually relies on a choice architecture that offers the
user few canonical options (default options). If C is the set of all possible options, and
C′ is the set of the default options, then C′ must be a subset of C (C ′ ∈ C). Usually, the
number of options offered in the default set is significantly smaller than that of the full
set (|C ′| � |C|). To formalize the coverage index, we indicate the satisfaction of user u
by a specific option c with the function fs(u, c), which returns a numeric value of 1 if
satisfied, otherwise 0, as given by:

fs (u, c) =
{

1, user i is satisfied by option c
0, otherwise , (1)

while fs (u, c) provides the satisfaction by a specific option, the satisfaction of user u by
the default set C′ (which includes few options) is given by:

S(u, C ′) =
{

1, ∃c ∈ C ′ : fs (u, c) �= 0
0, otherwise (2)

Assuming that we have N users, the coverage index for the default set C′ is defined as
the proportion of users who comply with S (u, c′) = 1, which is given by

Coverage(C ′) = 1
N

N∑
u=1

S(u, C ′) (3)

3.2. Social Network Posts Publishing Access Control

To empirically test our definitions, we look at OSNs, in which users make many access
decisions, such as setting the audience for each published post. Specifically, we for-
malize Facebook’s access control model. Let Au be the number of actions user u made,
which is, in this specific example, the number of posts he published, and let pua be the
configuration user u chooses for her action a (a = 1, 2, 3 . . . Au). In this case, we define
the satisfaction of user u for a specific post that she published (for a single action pua) by
the set of default options C ′ as follows: fp (u, a, C′) = ∃c ∈ C′ : pua = c. When measuring
the coverage, we can refer to all of the actions of all of the users homogeneously or
examine how the default options address each user’s action decisions. Therefore, we
define two evaluation indexes (two types of coverage) for the usability coverage of a
set of default C ′: choice coverage and user coverage. The choice coverage measures the
coverage by calculating the proportion of the actions’ decisions that are matched with
at least one of the options in the default set (without distinguishing among the users)
and is given by:

choice coverage(C ′) =
∑N

u=1
∑Au

a=1 fp (u, a, C ′)∑N
u=1 Au

(4)

The user coverage measures the coverage by calculating for each user a grade, which
is the proportion of her actions’ decisions that are matched with at least one of the
options in the optimal set and then averaging all of the user’s grades, which is given
by:

user coverage(C ′) = 1
N

N∑
u=1

∑Au
a=1 fp (u, a, C ′)

Au
(5)
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The choice coverage can be derived from the user coverage by giving the result of each
user’s coverage a weight, which is equal to the percentage of posts (out of all posts) the
user published. To illustrate how these indexes work, let us take two Facebook users
who have published posts. In this case, each posting is an action: User A has 3 posts,
and 2 of them can be satisfied by the set of default options (e.g., one of the options in the
set would include the user’s choice). User B has 18 posts, and 16 of them are satisfied by
the set of default options. We have a total of 2 + 16 = 18 covered posts out of 21 posts.
Thus, choice coverage = 2+16

21 = 86.7%. The grade for user A is 2
3 , and the grade for user

B is 16
18 , and therefore, user coverage = 2

3 + 16
18

2 = 77.8%. These two indexes represent two
different approaches to characterizing and evaluating the default options in this case.
The choice coverage addresses the overall publishing activities (all of the posts of all of
the users in the above Facebook example), ignoring its distribution across users, which
gives “heavier” users who published more posts a higher weight. The user coverage
addresses the proportion of users who are covered by the default set, normalizing each
user by the number of her publishing actions (the posts of each user in the above
example), and thus gives each user an equal weight. In the above example, it can be
observed that because user B is dominant (because of her quantity of posts compared
to user A), she significantly increased the choice coverage, while maintaining an effect
equal to that of the other user on the user coverage.

Setting a criterion for the user coverage and choice coverage indexes in order to
estimate normative approaches to what are “good” and “bad” options is not a straight-
forward task, because each choice has a complicated tradeoff between different values.
For example, if we increase the number of options in the default set, we will most prob-
ably increase the user coverage and the choice coverage, but the choice architecture will
provide lower usability to the user. Theoretically, it is possible to set boundaries to the
coverage indexes. However, we think that a more proper approach is to bound security
issues such as privacy violation (as described in Section 5.3) and then optimize the
coverage given these boundaries as constrains.

3.3. Analysis of Access Choice Architectures

To evaluate how access control choice architectures fare, we compared the coverage
of users’ actual choices by the existing choice architecture and an optimal choice ar-
chitecture that we generated (heuristically). The difference between the performance
of the two architectures reflects how well the existing choice architecture answers its
existing users’ preferences. To generate the optimal set, we build on previous studies
that allocated options by applying a general algorithm for optimizing the choice archi-
tecture [Olson et al. 2005; Watson et al. 2015; Hirschprung et al. 2015]. The algorithm
extracts k canonical options (k is a parameter) from the full decision space based on
users’ actual choices or preferences.

The choice reduction algorithm’s objective function can be one of the options: opti-
mization by actions (maximal choice coverage) or optimization by user (maximal user
coverage). The algorithm can be customized to a pre-reduction of the configuration
space in such a way that not all of the theoretical options are included in the process.
This feature is useful when, in a preliminary analysis, it is found that some options
were not selected by any of the users and, thus, can be eliminated to reduce complexity
and increase the algorithm’s performance. Additionally, the algorithm has the flexi-
bility of defining a threshold on two options to reflect a situation when two different
options can be similar such that if a specific user is satisfied by one of them, she will
be satisfied by the other. However, in our case, we set the threshold to 0, which means
we ask for complete equality. Thus, the reduced configuration space can be limited to
only those configurations that were chosen by at least one user. Because the algorithm
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has factorial complexity, this preliminary process is significant as a means of reducing
the computational effort.

The algorithm can work in two modes: standard mode, seeking the best k config-
urations to maximize the objective function, and preset mode, in which instead of
generating the optimal configurations, it is possible to insert k′ preset configurations.
The preset mode is useful for measuring the performance of a current set of default
options in an existing system. For example, when k′ = 3, it reflects the current num-
ber of Facebook defaults. The algorithm can run for all of the posts or only for posts
that were customized by the user (not configured by one of the three defaults). The
full pseudo-code of the algorithm applied for the Facebook post publishing example
(standard mode for all posts) is given in Algorithm 1.

ALGORITHM 1: The pseudo-code of the adopted algorithm for optimizing Facebook post pub-
lishing privacy settings (describe the standard mode)
% Eliminate non-relevant configurations
========================
conf options ←− all possible configurations % the combinatorical combinations

of all parameters
for x=1 to | conf options |

conf eliminate flag ←− TRUE
for u =1 to N

for a=1 to Au
if conf options[x] == puathen

conf eliminate flag ←− False
if conf eliminate flag

eliminate conf options[x] from conf options

% Find optimal configuration
==================
conf space ←− all k combinations out of conf options %

( |conf options|
k

)

for x=1 to | conf space |
for u =1 to N

User Coverage count ←− 0
for a=1 to Au

conf fit flag ←− FALSE
for s=1 to k

if conf space[x]k == pua then conf fit flag ←− TRUE
if conf fit flag

Coice Coverage[x] ++
User Coverage count++

User Coverage[x] ←− User Coverage[x] + ( User Coverage[x] / Au )
Case Objective Function

Optimize by Actions: SELECTED CONFIGURATION ←− configuration with
MAX (Coice Coverage)

Optimize by Users: SELECTED CONFIGURATION ←− configuration with
MAX (User Coverage)

The algorithm includes two main phases. In the first phase, the algorithm generates
all possible configurations of the choice architecture space. Then, the algorithm elim-
inates from the configuration space each configuration that was not used by at least
a single user. In the second phase, the algorithm generates all possible combinations
of k configurations out of the reduced configuration set. The algorithm calculates the
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choice coverage and the user coverage for each set and selects the optimal configuration
according to the objective function, which is the maximal choice coverage or maximal
user coverage.

4. METHOD

To evaluate the methodology, we first applied it to real data of post sharing configuration
decisions made by 266 users. These data were collected directly from Facebook. Then,
we launched a survey with 533 participants who were asked to indicate their preferred
three defaults. In the survey, the participants were not bound to Facebook’s choice
architecture, and they had the freedom to select their preferred set of defaults. We
calculated the optimized configuration set and compared it with current Facebook
defaults. Furthermore, we evaluated the amount of bias from the optimized set by
quantifying the openness level of sharing.

4.1. Data Collection

We collected the data of 266 users (21,950 posts) by using Facebook’s application pro-
gramming interface (API), which accesses and analyzes privacy settings on Facebook.
The application first asks for the participant’s consent and then asks the user to grant
specific access permissions to Facebook data. Afterward, the application accesses the
participant’s old posts using Facebook’s Graph API. The application also collects gen-
eral information about the participant, such as the number of friends and some demo-
graphic information (e.g., age, gender, and education).

4.2. Survey

We collected the answers of 533 participants in an online questionnaire that was not
framed under Facebook’s environment by using a survey engine. The participants
were asked to select their 3 preferred default options out of a set of 11 options. The
questionnaire of this survey is available in Appendix A. The options were shuffled and
displayed in random order. The survey set of options is similar to the Facebook set of
options and includes the option: “Share with people who live in your city or in your
area,” which can be selected in Facebook by using the smart-list1 feature.

4.3. Participants

The participants were Amazon Mechanical Turk (Mturk) workers who were Facebook
users. The participants were recruited via Mturk, which is a common tool for run-
ning behavioral studies [Mason and Suri 2012; Komarov et al. 2013] and has been
used extensively in the field of privacy [Ayalon and Toch 2013; Kelley 2010]. Also,
“MTurk especially is suitable to conduct survey research if Internet users are the in-
tended population” [Schaarschmidt et al. 2015]. American MTurk workers, who were
the population of our study, have a similar amount of personal information online as
the general American population [Kang et al. 2014]. In the data collection study, for an
approximately 10-minute task, the participants were paid $1.00 with a bonus of $0.25
for providing an additional detailed explanation with regard to sharing their decision-
making process (which was not relevant to this particular study). In the survey study,
the participants were paid $0.25 for approximately 3 minutes of work. Those rates
are within the standard hourly compensations in MTurk studies [Ross et al. 2010].
Participants were required to be over 18 years old, have an Amazon MTurk HIT rate

1Facebook Smart lists use the information the user and his friends added to the Education, Work, and
Current City of their profile to automatically create a sub-list of friends. For example, if a user lists Los
Angeles as his current city, he will have a list with all of his friends who also listed Los Angeles as their
current city.
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of 90% or higher, and be from the U.S. (to ensure that they understood the survey at a
native-tongue level).

The sample of the data collection study is heavily biased toward women: 87 of the
participants were male, and 177 were female (2 preferred not to report). With regard
to age, 49% of the participants were above age 35, 36% were between 25 and 34, and
15% were between 18 and 24. Most of the participants (93%) had at least a bachelor’s
degree, while 7% graduated high school. These results are in line with the studied
demographic properties of Mechanical Turk crowd workers [Tomlinson et al. 2010].
The average number of Facebook Friends was 400 for males and 382 for females, with
no significant differences.

The study was authorized by the institutional ethics review committee. We took sev-
eral steps toward ensuring the participants’ privacy: data were collected and surveyed
in an anonymized and secure fashion (we did not record Facebook identity data) only
after receiving the participant’s consent; the data were accessed only at the time at
which the participant granted consent; the post’s actual text and content were not
analyzed; and the data were accessed and stored in a secure and encrypted way.

5. RESULTS

The results of the studies are depicted in Figure 2. In both the behavior and preferences,
sharing the post with Friends was the most common choice, having been used in 48%
of the posts and 79% of the preferences. Public was the second most commonly used
option in both studies, with 28% of the posts and 58% of the defaults. Only-Me was
used in only 2% of the posts and only 31% of the defaults.

In the data collection study, custom options were used in 23% of the posts. This means
that for a certain post the user did not choose one of the default options but instead
used the advanced interface to customize the sharing settings. In addition, many of the
users used more than one sharing option (for different posts they published). Seventy
percent of the users used Friends as one of their options, while Public was used by
48% and a Custom option by 33% of the participants. It is interesting to note that 60%
of the users who had used Public had also used Friends, and 48% of the users who
had used Custom had used Friends. However, only 21% of users used both Friends
and Public. Gender was correlated with a difference in publishing behavior: females
published more posts than males, with an average of 122.0 for females and 72.6 for
males (t (198) = 3.669, p < .001).

In the survey study, “share with specific people” was chosen as one of the options in
the default (with a variable number of specified people) by 43% of users, Friends-of-
Friends by 34%, “include Friends but exclude specific people” (with a variable number
of specified people) by 30%, and “share with people in your area” by 12%. It can be noted
that the results of both studies generally line up. However, when comparing them, it
is important to indicate that in the data collection study, users made actual choices
regarding a sharing option (single one each time), which reflects their behavior, while
in the survey study, they elicited their preferred set of choices (three options at once),
which reflects their preferences.

5.1. Choice Coverage

In the data collection study, where users’ behavior was sampled, we applied the op-
timizing algorithm (Algorithm 1, as described in Section 3.3) to generate optimized
privacy options. Then, we synthesized only those options that were actually chosen by

2Since each action in the data collection study included exactly one option, the frequencies in graph (a) sum
to 100% (only the top 8 are displayed). However, in the survey study, each default includes 3 options, and
thus, the sum exceeds 100%.
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Fig. 2. How participants use and select privacy options. The left graph (a) depicts the distribution of the top
8 most popular access options that were chosen by the users in the data collection study (a total of 21,950
posts, with a single action per post). The right graph (b) depicts the distribution of access options that were
included by the participants in their preferences (a total of 533 participants, with 3 options per participant).
The Y-axis describes the various privacy options that were chosen, while the X-axis describes for graph (a)
the percentage of posts that were configured with that option and for graph (b) the percentage of defaults
that included this option2.

the users, and we discarded the theoretical options that belong to the configuration
space. As a result, out of 21,950 posts, only 45 privacy options were actually in use.
The algorithm was configured to run for one to four choices (k ∈ {1, 2, 3, 4}) and for both
objective functions: optimized for posts and optimized for users. For each objective, both
the choice coverage and the user coverage were calculated by introducing the optimized
set of defaults to the whole set of options. Afterward, the algorithm was run in pre-set
mode, with Facebook’s three default options inserted (Public, Friends, Only-Me). The
optimized default options that our algorithm produced for k = 3 configurations, when
optimized for choice coverage, are the following:

1. Friends
2. Public
3. Friends except restricted (restrict friends from the pre-defined list)

We applied the same optimizing algorithm to the survey data where users’ prefer-
ences were sampled. Due to the nature of this study, which did not sample specific
Facebook actions (and each participant had only one result), the only relevant mode
was optimized for users, and the algorithm was configured to run for three choices
(k = 3). The user coverage in this case was calculated by the rate of users who had at
least one of their preferred choices included in the optimized set. The default options
our algorithm produced are the following:
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Fig. 3. Coverage rates. The x-axis stands for the number of options (|C
′
|), while the y-axis stands for the

coverage rate. The line graphs depict the choice coverage (red) and user coverage (blue) that were achieved by
the algorithm in the data collection study for all of the posts when the subjective function was maximizing
the choice coverage. The triangle depicts the user coverage of the survey study, while the rhombuses depict
the coverage that is achieved by Facebook defaults.3

1. Friends
2. Public
3. Share with specific people

Figure 3 depicts the coverage according to the number of options and type of coverage.
It can be seen that for three default options, when optimized for posts, the choice
coverage and user coverage were 85.8% and 85.7%, respectively, for the data collection
study, and the user coverage was 88.6% for the survey study. This result means that
approximately 86% of the users would be satisfied with at least one of our optimally set
options. The asymptotic nature of the graph suggests that there is no significant benefit
from increasing k above 4 options. This result sets a clear bound on the optimality of
the default options in the given distribution of privacy decisions. The conclusion is
that we would probably not find any number of options that would satisfy the whole
user population without sacrificing too much of the user’s burden. The gap between the

3As can be seen in Figure 3, the differences between the user coverage of Facebook defaults and the two
configurations optimized set are less significant than with the choice coverage. The choice coverage is exactly
the same in the Facebook defaults and the two configurations optimized set. This is a result of the internal
overlap of users’ choices, so that the addition of the Only-Me option does not contribute much to the user
coverage.
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choice coverage and the user coverage graphs is an outcome of the dispersion of satisfied
and unsatisfied posts among the users.

To understand how the algorithm can address sophisticated custom options, we
applied it exclusively to custom options (in the data collection study). When optimizing
the choice coverage for only the set of customized posts (k = 3), the algorithm produced
the following options:

1. Friends excluding 1 specific friend
2. Friends, but Restricted (restrict friends from the pre-defined list)
3. Friends, but Restricted + 1 specific friend

These options yield coverages of 67.6% and 48.9% for choice coverage and user coverage,
respectively. When optimized for user coverage, we obtained 57.8% and 62.9%, respec-
tively. The reason for the lower coverage rates in comparison with coverage for all of
the posts is the difference in homogeneity between the user’s choices. We see sufficient
overlap between the user’s choices when choosing general options, but Custom options
are used much more sporadically by the users. There are very few cases in which the
same user uses more than two custom options.

The current defaults of Facebook can be compared to the optimal defaults that are
generated by our algorithm. As Figure 3 shows, the Facebook default of choice coverage
is 77.2% and of user coverage is 78.4%, while the optimal generated options cover 85.7%
and 85.8%, respectively. The line graph depicts the coverage that is achieved by the
algorithm (for 1 to 4 options), while the rhombuses depict the coverage that is achieved
by Facebook defaults (there were three options). The vertical distance between them
is the gap between the optimal defaults and Facebook’s current defaults, and thus, it
reflects the contribution of the algorithm to the coverage. The proposed methodology
can immediately increase the choice coverage by 8.5% and the user coverage by 7.4%
solely by altering the proposed defaults. The reasons for the better coverage of our
defaults is simple: Options such as Only-Me are hardly used by users. Additionally,
specific custom options (e.g., Friends except for particular Friends) are a common
choice among users but are difficult to define and, therefore, may be inaccessible to the
users.

5.2. Temporal Analysis

When looking at changes through time, we see more positive improvements in the cov-
erage and user burden. Before 2012, Facebook’s privacy defaults included also Friends-
of-Friends as a default option [FTC-USA 2011], and because that configuration had a
very low coverage, it downgraded the overall coverage of the options. Facebook has a
“built in” default choice for post publishing as well as for other information items. This
default is the privacy level that will be allocated to a post when a new user has reg-
istered to Facebook, and has not changed the default suggestions while going through
the registration process, and has not changed the post’s privacy setting when publish-
ing the post. It was found that users publish significant amounts of information on
Facebook, and nearly half of them adopt the default privacy choice [Liu et al. 2011].
Facebook is changing those defaults continually; for example, by 2005, the default was
Friends,4 by 2009 Friends-of-Friends, by 2010 Public, and today (May 2015) Friends
again [Loewenstein et al. 2015].

If we apply the results from our experiments to the changing choice architecture
settings, we can calculate the coverage of Facebook defaults across time, as depicted in

4The definition at that time was “network,” which is ranked one level above friends in the order of sharing
levels, but it is not used today of Facebook.
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Fig. 4. The coverage of the Facebook default choice for a post’s privacy across time.

Figure 4. It can be observed that from 2005 to 2007, Facebook provided defaults with
coverages of approximately 50%. Then, the default was changed to Friends-of-Friends,
which caused the coverage to drop to nearly 0% because this setting is not popular
among Facebook users. Since December 2009, Facebook has improved the coverage
and abandoned the Friends-of-Friends setting. Those changes across time refer to
Facebook defaults, i.e., when a user is publishing a post without even selecting any of
the three canonical options. In any case, a single choice has a relatively small coverage
of approximately 50%, but a set of three optimized options provides a coverage of 85%,
according to our experiment results. For that reason, we argue that Facebook should
optimize the major choices of the privacy configuration; selecting the single best default
is not sufficient.

5.3. Evaluating the Choice Architecture Bias

To analyze the direction in which choice architectures lead their users, we define an
openness index, which is a normative model that relies on a notion of openness vs.
closedness in a user’s access decision. The index is based on the following assumption:
When a user sets the access permissions to a Facebook post, she can experience some
privacy loss due to unexpected use of the data, or due to disclosure to an unintended
population. For example, if Alice published a post using the Friends option, and Bob,
who is a Facebook friend of Alice, publishes this post to his Facebook friends, then
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Table I. An Example of Possible Measurements of Openness of Facebook Post Sharing Decisions

Rank Example

Parameter (noted OP) Explanation Value
Public Cp If Public is selected, then the rank is Cp Cp = 20
Only-Me 0 If Only-Me is selected, then the rank is zero because

there is no disclosure.
0

Friends Cf If the Friends option is selected, then the rank is CF Cf = 10
Friends-of Friends Cfof If Friends-of-Friends is selected, then the rank is

CFoF
Cfof = 15

Restricted Cr This parameter is defined in Custom mode and
indicates whether to exclude a pre-defined list of
friends. If used, it reduces openness, and thus, its
value is negative. It should be carefully handled
when added to other values to avoid OP<0.

Cr = −5

Include (n) fi(n) This parameter defines the number of friends who
will be disclosed to the post. Here, n is the number of
friends who are explicitly included in the audience of
the post. We know that fi(n) is a monotonically
increasing function (because when more friends are
disclosed to the post, there might be a higher rank of
openness), and we can assume asymptotic behavior
(because there might be a significant difference
between 3 and 4 friends and a less significant
difference between 50 and 51). Such a function
defined by the regulator might be:

fi(n) = a
(

1 − 1
bn

)

fi(n) = n

Exclude (n) Fe(n) This parameter defines the number of friends who
will not be disclosed to the post. Here, n is the
number of friends who are explicitly excluded from
the audience of the post. We know that Fe(n) is a
monotonically decreasing function (because when
more friends are excluded from the post, there might
be a lower openness), and we can assume asymptotic
behavior (as in Include). It should be carefully
handled when added to other values, to avoid OP<0.

Fe(n) = −n

OP represents the openness level; the higher OP is, the higher the openness is.

Alice is disclosed at a Friend-of-Friends level. To quantify the privacy loss, we created
an index to measure the openness level of a configuration, as described in Table I.
The designer of the choice architecture can set a subjective rank that represents the
hypothetical openness for each parameter of the post disclosure configuration. The
ranks have no units and can be used mainly as a comparison between two or more
configurations. For example, if Friends has a rank of 10 and Public has a rank of
20, then Public openness is double that of Friends. Because Public is the maximal
disclosure, the rank as exemplified in Table I cannot exceed the rank of Public (i.e., 20).
Thus, for example, if a user included 22 explicit names of friends, then the rank would
be 20 rather than 22.

Given the openness index, we can measure the openness of each specific Facebook
post-sharing configuration. If we use the example values of Table I (right column),
we obtain an openness value of 20 for the current Facebook default, which is Public.
However, when applying the openness index to the post’s sharing decisions of the users
in our data collection study, the average openness of all of the posts is 11.6 and only
1.3 for customized posts. An immediate conclusion of this result is that it appears that
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Fig. 5. The distribution of the openness (OP) across all of the published posts. The X-axis is the rank of
openness, while the Y-axis is the proportion of posts that have that rank value. The red bars indicate the
population that is nudged by the Facebook default choice (Public) to higher openness than their preferences
and, thus, will not be satisfied by this default. The green bar indicates the population that will be satisfied.

Facebook introduces to its users a set of options that are more open compared to the
user’s actual choices. Figure 5 depicts the distribution of the openness across all of the
posts that were published according to the user’s choices. It can be observed that most
users will find the default choice too open, and only 28% of users will find it safe.

To measure the fitness of the canonical configurations to a specific choice according
to the rank of openness, we define an openness distance between them. The openness
distance is the minimum of the absolute differences between each of the options in
the canonical set and the preference, i.e., the distance between the preference p and
the canonical set C′ (with i options) is openness distance = mini |OP(p) − OP(ci)|. The
average openness distance between the posts in the user study dataset and the Facebook
defaults is 0.89 and between the optimized defaults is 0.29, which indicates that the
optimal set better fits users’ preferences and, thus, has a lower potential of violating
users’ privacy. Figure 6 depicts the accumulated openness distances across the various
openness distance levels. It can be noted that the optimal configuration defaults (orange
line) have better fitness than the current Facebook defaults (blue line).

6. DISCUSSION

The design of access control choice architectures can reflect users’ preferences to vary-
ing degrees, and thus is a critical issue in protecting users’ security and privacy. Our
methodology provides a way to analyze, monitor, and assess how the architecture op-
erates. To provide a meaningful and intelligent analysis, two capabilities are required:
(a) the ability to measure the fitness of an existing choice architecture to the user’s
preferences and (b) the ability to optimize the choice architecture to ensure minimal
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Fig. 6. The accumulated distance between users’ choices and: Facebook defaults (orange line) and the
optimal defaults (blue line). The X-axis describes the distance to the best option of the set, and the Y-axis is
the accumulated distances. The higher the accumulated distance, the worse the fit to the user’s preferences.

deviation from the user’s preferences. In this study, we show that by applying an algo-
rithmic approach, the choice architecture can be evaluated and optimized while relying
on the existing user preferences.

We applied the proposed methodology to real preferences of users who configured
their post-sharing options in Facebook, and we show that the Facebook defaults can be
improved from a coverage of approximately 75% of the users to 85%. Our assessment
echoes the discussion around Facebook’s default privacy options, including the criti-
cism against the existence of the Friends-of-Friends option [FTC-USA 2011]. Long-term
analysis of OSN sharing behavior shows that between 2005 and 2012, public sharing of
almost every information item on Facebook dropped from 95%–85% to approximately
20%-10% [Stutzman et al. 2013], and from early 2010 to 2012, people became dra-
matically more private on Facebook [Dey et al. 2012]. This result is relevant to the
interpretation of our findings, because in this period, Facebook’s default choice was
public for most of the data types. Therefore, we assume that experienced users have
settings that are very different from the initial defaults that were offered by Facebook.
Our study does not provide a silver bullet for designing the default options; however,
our conceptualization and evaluation can provide clear design guidelines.

Using similar algorithmic approaches combined with information-flow analysis, user
interfaces of applications can be examined with no human intervention. Therefore,
massive numbers of applications on the Web or available through app stores can be
regulated with relatively little effort. For example, a regulator can set ranks to the
default options of web browser security, evaluate those defaults and set rules to restrain
those options. The methodology can also be applied in a mobile applications store. By
using these approaches, regulators can ensure that all of the app store applications
have a specific privacy default option with regard to location API calls, for example.
Because the methodology relies on the user’s actual preferences, it can also address
different sub-groups of the users, who can differ in their preferences, such as groups
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based on geographic regions [Krasnova and Veltri 2010]. We can see the beginning of
these abilities in automatically enforced filtering procedures in the Apple App Store.
This vision of wide-scale policy enforcement can be seen to be a powerful tool for policy
makers, continuing the current trend of regulating human-computer interactions by
enabling new types of legislative and administrative tools. On the other hand, the
vision of automatic enforcement is also disturbing, since it practically removes control
from the user.

Our method can be applied to other security domains in which users make decisions
within a choice architecture. For example, the deployment of organizational firewalls
or data leakage prevention systems can lead to conflicting interests of employees and
organizations, where organizations close access to websites and services that employ-
ees still want to access. This situation can lead employees to refrain from using the
organizational channels and to switch to their own personal devices [Pfleeger et al.
2014]. In browser security and privacy interfaces, users can manage whether cookies
from second-party and third-party websites are accepted, which can lead to conflict-
ing interests between website functionality and privacy [Friedman et al. 2002]. Our
method can be applied to the analysis of access control choice architectures, providing
a way to adjust these architectures accordingly and to improve their design in order to
encourage users to make use of these systems. For example, we can measure the pref-
erences of users and compare them to the actual behavior to see whether users’ actions
are more correlated with the system’s choice architecture or with their preferences.

6.1. Limitations and Future Work

The analysis relies on data collected by users’ behavior in an existing choice architec-
ture. We cannot estimate the effect of the architecture and whether and how it has
biased any user choices. Probably, people’s choices will be different if the choice archi-
tecture is different. It is important to point out that if a system’s choice architecture
does not fit users’ choices made within the boundaries of that architecture, then the
architecture is definitely lacking. This limitation was mitigated by conducting the sec-
ond user study, when users elicited their preferences outside of the Facebook choice
architecture environment. Moreover, we do not know whether our optimal set of op-
tions is the most fitting for the entire Facebook user base. However, the privacy choices
made by our participants are similar to the choices obtained by representative U.S.
surveys [Madden 2012] and long-term observational studies [Stutzman et al. 2012].
A further study that validates the advantage of the proposed (optimal) choice archi-
tecture over Facebook’s architecture could better establish the results. This study can
be performed, for example, by creating an environment that simulates the Facebook
configuration mechanism, which will be introduced with Facebook options to one group
of users and to another group with the optimal set of options. Another aspect of the
configuration setting is the detailed list of friends who are included or excluded from
a post disclosure. In our work, we only referred to the number of friends (and not to
friends by name), since in the vast majority of the cases, they were the same friends
across the posts a specific user published. Further research could investigate the cases
in which a user list of included or excluded friends is not constant.

Naturally, this research opens up new questions and challenges. For example, it is
possible to increase the average fitness of the access control mechanism to users’ pref-
erences by improving the usability to a large degree for a small subset of users or by
improving the usability to a small degree for all of the users [Sen 1970]. However, if
we want to optimize the social fairness across users, i.e., to strive for higher equity,
this approach can reduce the average fitness for all users because fairness and average
utility are in a trade-off relation [Blackorby and Donaldson 1977]. Finally, it is also
important to emphasize that our work assumes that choice architectures are static:
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they do not adapt to particular users and do not change over time. Most configuration
systems follow this assumption, but some new interfaces, such as Facebook’s current
privacy settings, are adaptive and dynamic. Our method could serve as the basis for
future studies that evaluate the fairness of adaptive interfaces by analyzing the op-
tions available to each user individually and comparing them to previous behavior or
preferences.

7. CONCLUSIONS

In this article, we describe a method for evaluating and optimizing access control to
better protect a user’s desired privacy according to their preferences and, specifically,
to quantify how architecture designers aspire to nudge users toward specific choices.
We empirically tested our model on Facebook post sharing behaviors of users and on
the results of a survey on default preferences. Our results paint a complicated picture.
Facebook’s defaults at the time of the study comply for the most part with users’ behav-
ior and stated preferences. At the same time, these default options provides a coverage
that is lower by approximately 8% than the optimal set of default options. Overall,
the current choice architecture is biased toward a higher openness level, a design that
can reflect the software company’s interests rather than the user’s preferences. Our
proposed methodology can quantify this type of bias and can suggest an optimal choice
architecture that answers users’ preferences and best represents their behaviors.

APPENDIX A — THE QUESTIONNAIRE OF THE SURVEY STUDY

The survey study includes these 11 options, which were shuffled and displayed in
random order to the participants:

1. Public (anyone on or off Facebook)
2. Friends (your friends on Facebook)
3. Friends of Friends
4. Only me
5. Share with people who live in you city or in your area
6. Share only with 1 specific person (which you choose)
7. Share only with 2–4 specific people (which you choose)
8. Share only with a group of 5 or more specific people (which you choose)
9. Share with all my friends except 1 specific person (which you choose)

10. Share with all my friends except 2–4 specific people (which you choose)
11. Share with all my friends except with 5 or more specific people (which you choose)
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