Detecting interruption events using EEG

Frank Bolton
Faculty of Engineering
Tel Aviv University
Tel Aviv, Israel
frankbolton@mail.tau.ac.il

Dov Te’Eni
The Leon Recanati School of Business Administration
Tel Aviv University
Tel Aviv, Israel
teeni@tau.ac.il

Eran Toch
Faculty of Engineering
Tel Aviv University
Tel Aviv, Israel
erant@tauex.tau.ac.il

Neta B. Maimon
The School of Psychological Sciences
Tel Aviv University
(Neurosteer Inc)
Tel Aviv, Israel
netacoh3@mail.tau.ac.il

Abstract—Contemporary computing devices subject their users to continuous interruptions that can seriously harm productivity and well-being. Understanding how people react to notifications can provide valuable information in managing undesirable interruptions. We test whether a wearable EEG system can detect interruption decision events. Participants in a lab experiment (n=15) received notifications while carrying out a primary task, at the same time their brain activity was recorded with a wearable EEG system. We show that specific EEG features can distinguish between notifications that interrupt the user’s activity and notifications that the user can disregard. Our results demonstrate that wearable EEG can serve as a basis for managing interruptions.

Keywords—EEG, interruption, mental load, workload

I. INTRODUCTION

Interruption is “the suspension of one stream of focused activity prior to completion, with the intent of returning to, and completing, the original stream of activity” [1, p. 286]. Interruptions can be harmful to productivity and can be dangerous in some situations, such as driving [2]. The user’s attention can be drawn to an interrupting task using notifications delivered by a computing device. At the same time, it’s impossible to get rid of notifications altogether because they help users maintain information awareness.

Researchers have tried to improve the interruption experience by delivering interruptions at breakpoints between tasks [3], which correspond to low mental load levels (the subjective effort applied by a person performing the required work). Electroencephalography (EEG) is well established as a tool to measure mental load [4], and indicate opportunities for interruption [5] as well as the effects of interruptions [6]. The Neurosteer EEG system selected for this study includes a novel output channel (called VC9), positively correlated to mental load [7].

Managing interruptions requires identifying and mitigating them. However, the literature still has a gap in documenting physiological measurements of interruption events. Specifically, we did not find physiological markers that are linked to sensing notifications. Once the notification is sensed, whether a physiologically measurable difference exists between being interrupted and ignoring the notification, we believe this understanding is important as it lays the foundation for developing smart systems that can learn the interruption handling preferences of a user [8].

II. EXPERIMENTAL SETTINGS

We developed and performed a user study where an interrupted task is integrated with an EEG system. We asked the question: Can EEG detect notifications and interruption decisions? Specifically, we evaluated whether EEG features exist that are different when notifications are detected (Q1) and which specific EEG features are different between the acts of performing the interruption and ignoring the notification (Q2). The notifications contain a preview that is purposefully different as a way to communicate the appropriate action required from the interruptee; to switch or not switch to the interrupting task.

A. EEG Recording

A wearable EEG sensor from Neurosteer® measured the brain activity. It consists of a 1-lead medical grade electrode connected by Bluetooth to a relay computer that retransmits the data to the Neurosteer Cloud server (Figure 1). In the server, a series of signal processing and machine learning models approximate features that are normally accessible with large EEG electrode arrays to produce 251 features that update every second [9].

B. Experimental task

Fifteen participants (mean age 25, nine males and six females) underwent a custom-developed experiment consisting of a main task and an interruption. The main task, is a mental arithmetic task with the equation broken up. The participant needs to remember the result momentarily and respond whether their answer agreed or disagreed with the computer-generated result [10]. It was selected to produce...
presented (referred to as high) and a notification consisting of a 1Hz flashing indicator that participants were told not to respond to (referred to as low). Additionally, we included a control condition where no notification was presented (referred to as none). Each condition occurred 48 times, resulting in 144 trials. The study was performed within subject, each participant performed all trials presented in random order.

Five participants performed the experiment on one day, and their data were analyzed to identify EEG features-of-interest (training group) before investigating the second group of ten different participants to create the hold-out data (testing group) [12]. Participants received $15 for participating in the study taking approximately one hour.

C. Data analysis

Analysis was performed on one second of EEG data before interruption decision is made. Repeated trials were averaged to generate feature vectors. We performed a 2-way ANOVA p-value to filter features of interest from the training group. Paired T-Tests were evaluated on data from the testing group of participants to evaluate research questions.

III. EXPERIMENT AND RESULTS

The “training” group of five participants exhibited significant main effects of interruption on twenty of the EEG features. Paired T-Tests indicated that most (fifteen) of the features-of-interest could distinguish between low and high conditions. The fewest features could distinguish between the low and the no-interruption conditions (two features).

The “testing” group of ten participants exhibited significant main effects in the ANOVA analysis within seven features out of the twenty significant in the “training” set (Table 1). Paired T-test results reflected all features were different between the high vs. low conditions, six were different between the no interruption condition and the high, and none were different between the no interruption condition and the low condition.

<table>
<thead>
<tr>
<th>Feature Name</th>
<th>Train AOV p-val</th>
<th>Test AOV p-val</th>
<th>t-test high vs low</th>
<th>t-test low vs high</th>
<th>t-test none vs high</th>
<th>t-test none vs low</th>
</tr>
</thead>
<tbody>
<tr>
<td>Baf_35</td>
<td>0.005</td>
<td>0.002</td>
<td>0.014</td>
<td>0.009</td>
<td>0.263</td>
<td></td>
</tr>
<tr>
<td>VC_9</td>
<td>0.023</td>
<td>0.005</td>
<td>0.013</td>
<td>0.012</td>
<td>0.327</td>
<td></td>
</tr>
<tr>
<td>T4</td>
<td>0.002</td>
<td>0.005</td>
<td>0.005</td>
<td>0.019</td>
<td>0.392</td>
<td></td>
</tr>
<tr>
<td>T5</td>
<td>0.028</td>
<td>0.008</td>
<td>0.006</td>
<td>0.046</td>
<td>0.520</td>
<td></td>
</tr>
<tr>
<td>T6</td>
<td>0.015</td>
<td>0.048</td>
<td>0.035</td>
<td>0.109</td>
<td>0.772</td>
<td></td>
</tr>
<tr>
<td>T7</td>
<td>0.041</td>
<td>0.003</td>
<td>0.007</td>
<td>0.008</td>
<td>0.231</td>
<td></td>
</tr>
<tr>
<td>L1</td>
<td>0.010</td>
<td>0.004</td>
<td>0.019</td>
<td>0.012</td>
<td>0.446</td>
<td></td>
</tr>
</tbody>
</table>

IV. CONCLUSIONS

In this study, we set out to find EEG features that identify whether an interruptee sensed a notification. Secondly, whether a notification resulted in performing the interruption task. The question was partially confirmed as six of the features of interest are different between the no interruption and high importance notifications. In contrast, none of the features are different between the no interruption and the low importance notifications. The second question was confirmed as seven of the features of interest are different between the different interruption decision conditions.

The ability to detect the occurrence of notifications and notification decisions makes an important step towards filtering interruptions [8]. A notification detection marker could enable an indication of “message received” that could prevent accidents in high risk environment [13]. Since the EEG hardware is not tied to the computer it can be applied to different contexts like 911 emergency operators [14].

TABLE I. SEVEN FEATURES WITH LOW P-VALUE FOR THE TWO-WAY ANOVA ON THE TEST DATA AND RESULTS FOR PAIRED T-TEST RESULTS.