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1 INTRODUCTION

In recent years, governments and corporations have increasingly relied on cyber-security sys-
tems to protect against increasing threats on networks, devices, and organizational and personal
information. These systems prevent adversaries from breaking into networks and devices, from
sabotaging digital activity, and from accessing private information. At the same time, by monitor-
ing networks and computing devices, cyber-security systems ultimately affect individuals’ privacy.
Systems in domains such as intrusion detection, malware detection, data leakage prevention, and
phishing identification regularly monitor network traffic, device use, and personal communica-
tions. In many cases, the monitoring system can trace the identities of users and access sensitive
information. For instance, many enterprise cyber-security systems monitor IP addresses that can
be easily traced back to a particular individual. Moreover, the user’s device identification on mobile
devices is often accessed by cyber-security applications. Therefore, while cyber-security mecha-
nisms protect individuals from attacks from hackers and other third-party adversaries, they also
create new vulnerabilities for privacy violation from the entity that runs the cyber-security sys-
tem. These vulnerabilities can be realized if the security systems themselves are compromised,® if
insiders make use of this information, or if the personal data are used contrary to the expectations
of end users.?

The increasing threat of computer attacks and the intrusiveness of cyber-security mechanisms
present policymakers and technology developers with the difficult challenge of balancing security
risks against privacy and civil liberties concerns (Tene 2014; Landau 2014). The fact that many
national cyber-security policies require the sharing of the detailed information of attack logs and
other types of information necessitates an urgent understanding of the privacy risks related to
cyber-security (Sales 2013; Nolan 2015). Privacy concerns are among the reasons why employees
switch to their personal devices (e.g., smartphones and portable computers) to perform work-
related activities (Pfleeger et al. 2014) and home-users turn away from some anti-virus applications
(Warkentin and Willison 2009). Therefore, understanding and solving privacy threats is crucial, as
those threats can reduce the acceptance and usage of cyber-security systems by organizations and
individuals, leading to increased number of threats for everybody.

Making sense of the state of privacy in the world of cyber-security systems requires bridging
the gap between the cyber-security literature and the privacy literature. Several articles survey
cyber-security threats and solutions in diverse areas such as distributed systems (Uzunov et al.
2012; Uzunov and Fernandez 2014), cloud computing (Fernandes et al. 2014; Modi et al. 2013a,
2013b), wireless networks (Butun et al. 2014), smart grids (Liu et al. 2012; Yan et al. 2012), Internet
of Things (IoT) (Weber 2010), mobile computing (La Polla et al. 2013), collaborative intrusion detec-
tion (Zhou et al. 2010a; Vasilomanolakis et al. 2015a), and, more generally, in any type of computing
area (Jang-Jaccard and Nepal 2014; Uzunov et al. 2015). There are also several existing surveys on
privacy risks in various domains, such as smartphones in the workplace (Miller et al. 2012), RFID
chips (Weis et al. 2004), health applications (de los Angeles Cosio Leon et al. 2009), cloud computing
(Zhou et al. 2010b), personalization systems (Toch et al. 2012), the Internet of Things (Ziegeldorf
et al. 2014), and pervasive systems (Bettini and Riboni 2015). However, to the best of our knowl-
edge, there is no systematic analysis of the privacy properties of cyber-security technologies. This
type of wide-ranging analysis is necessary to guide future research toward privacy-preserving
cyber-security technologies and to assess the privacy risks of existing technologies. In addition to

IThe data breaches of encryption companies such as RSA (Labs 2011) and DocuSign (Krebs 2017) exemplify this risk.
2See, for example, the recent court order (Authority 2016) of the Italian data protection authority against an Italian uni-
versity that was continuously collecting data associated with MAC addresses, claiming they were required for security
purposes (among other purposes).
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Cyber Attacks ' Cyber-Security Privacy Risks
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- Ecosystem - Level of user control

Fig. 1. A visualization of the taxonomy used to analyze cyber-security mechanisms and the risks they pose.

being an important application of online monitoring, cyber-security entertains a balance between
external threats, such as the hackers the surveillance can defend against, and the internal threats
that are caused by the surveillance itself (Crossler and Bélanger 2017). Therefore, a privacy impact
assessment process that is applied to cyber-security technologies in a comprehensive way should
take into account both the protective and the intrusive characteristics of these technologies.

The objective of this article is to provide a comprehensive mapping of the privacy threats related
to cyber-security technologies. Figure 1 provides an overview of the taxonomy, which details the
privacy risks related to different types of cyber-security technologies, which in turn are related
to specific cyber attacks. The rest of the article is structured as follows: we start by providing an
overview of the relevant technologies, suggesting a basic categorization of cyber attacks and cyber-
security systems (Section 2). We then suggest a classification that categorizes the potential privacy
threats (Section 3). We analyze the current state of privacy of cyber-security technologies and
demonstrate how our taxonomy can be applied to a representative set of technologies (Section 4).
We provide a case study of an IoT cyber-system to demonstrate how our framework can be applied
to analyze specific system designs (Section 5). Finally, we discuss the effects of our findings on both
policymakers and cyber-security developers (Section 6). We especially emphasize future research
directions for developing privacy-enhancing cyber-security mechanisms and identifying possible
ways to efficiently balance security and privacy.

2 CYBER-SECURITY MECHANISMS

The aim of cyber-security is to protect networks, computers, programs, and data from attacks
and unauthorized access. This section first introduces cyber attacks and provides the language for
describing cyber attacks and cyber-security systems. The second part of the section proposes a
categorization of cyber-security mechanisms that will be helpful when considering their impact
on privacy.

2.1 Classification of Cyber Attacks

A first dimension for classifying an attack is the goal of the attack. This is often related to the way
an adversary monetizes the attack (e.g., by stealing information and selling it to advertisers or
criminals). Overall, the attack goals fall into one of the following categories (Lala and Panda 2001):
(1) stealing information, such as data on a device, media files, and user credentials; this action
is usually performed by spyware malware; (2) tracking user information, i.e., monitoring users’
sensitive data (e.g., locations, activities, or health-related data); this action is usually achieved using
mobile malware; (3) taking control of a system, as is done by Trojan, botnet, and rootkit (Graziano
et al. 2016).
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A second dimension for classifying an attack is the attack vector and it represents the vulnerabil-
ity exploited by an adversary to gain access to a network or computer system to perform malicious
actions. Attack vectors can be identified at three different layers: (1) hardware, (2) network, and
(3) application.

2.1.1 Hardware Attacks. At the hardware level, we find attacks that include manufacturing
backdoors, gaining access to memory, and hardware tampering. The common goal of these at-
tacks is twofold: modifying the hardware to access sensitive information and creating a backdoor
(Tehranipoor and Koushanfar 2010) (e.g., install an invisible program in the hardware circuit) that
can be used to regain access to the compromised machine. Such hardware attacks can be applied to
several types of devices, such as network appliances, surveillance systems, and industrial control
systems.

2.1.2 Network Attacks. Network attacks can target the network protocol or the network device
software, and their goal is either the denial of service or hijacking a network connection to steal
sensitive data. Specifically, frequent attacks using vectors at the network layer are Denial of Service
(DoS) (Schweitzer et al. 2016), IP spoofing (Thang and Nguyen 2016), and man in the middle attacks
(Desmedt 2011).

2.1.3  Application Attacks. At the application level, phishing and client-side web attacks are
the most common attack vectors, according to the main security market players (e.g., Symantec
(2015b)). These attacks target applications such as e-mail services and browsers, since they are the
most exposed to the Internet. Regarding attacks through email, phishing is a form of fraud in which
the attacker tries to gather sensitive information, such as credentials and credit card numbers
by impersonating a reputable entity or person via email, IM or other communication channels
(Fette et al. 2007; Ma et al. 2009). Many application-level attacks make use of social engineering
techniques that use humans to compromise systems, manipulating them into carrying the attack
through deceit (Krombholz et al. 2015). A common example of client-side web attacks is Cross-Site
Scripting (XSS), which consists of injecting client-side script code (e.g., JavaScript) into web pages.
Such injected code could be used for different purposes, such as to bypass access control or to force
a user to execute some actions on a remote website on behalf of the attacker.

A large number of application level attacks can be categorized as malware (Lanzi et al. 2010).
Malware is any malicious software that an attacker manages to run on the target computer. It is
used to gather sensitive information, to gain access to private computer systems, or to perform
massive attacks. Malware is defined by its malicious intent, acting contrary to user requirements.
Malware can be classified into several categories depending on the design goal. The most common
malware categories are mobile malware, botnets, spyware (which transmit personal communica-
tions), ransomware (which encrypt a victim’s data and force victims to pay to decrypt it), and
banking malware (Symantec 2015b). Different techniques are used to install malware on a target
system. For example, mobile malware is usually installed via SMS, via unofficial application repos-
itories, or by exploiting vulnerabilities of the OS. Once the malware is installed, it can perform
several malicious actions, such as stealing information (in this case, it is also called spyware) or
tracking user actions.

2.2 Classifying Cyber-Security Technologies

In this subsection, we propose a classification of cyber-security technologies. It is important to note
that commercial products do not necessarily have a direct mapping in our classification system,
since they often package different protection mechanisms under the same name (e.g., anti-virus),
which are possibly offered both as standalone and client-server architectures and for different
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ecosystems. In the following subsections, we describe four classification categories, and in Sec-
tion 2.2.5, we present the classification of well-known cyber-security solutions.

2.2.1 System Architecture. Protection systems are software packages that are designed to be de-
ployed according to a specific architecture. The three main architectures are standalone, centralized
client-server, and collaborative architectures.

The first architecture (standalone) is an architecture in which the cyber-security mechanism
is installed only on the local machine to be protected. Such a configuration can be found in the
first generation of anti-virus products (Cristalli et al. 2016), where the system performs the entire
detection task on the local machine without passing data across the network.

The second architecture (centralized client-server) is composed of a client, which is usually in-
stalled on the system to be protected, and a centralized server that runs the detection algorithm.
This architecture is often adopted by contemporary anti-virus systems when, for example, it has
to check whether some visited web domains are malicious or not. The client sends the URL of a
particular machine, and the server replies based on its blacklist.

The last architecture (collaborative) is implemented as a distributed system, possibly following
a peer-to-peer paradigm. It is often adopted by network detection systems such as Snort (Roesch
et al. 1999), where sensors are localized on different network nodes and cooperate with each
other using a correlation algorithm to determine anomalies/attacks on the monitored network.
Recent examples include Worminator, a collaborative intrusion detection system based on encod-
ing threats using Bloom filters (Locasto et al. 2005; Vasilomanolakis et al. 2015a), and other works
based on hidden Markov random field (Xie et al. 2016) and autonomic and self-organizing hive-like
collaboration (Korczynski et al. 2016).

2.2.2  Type of Detection. Defense mechanisms can operate at the same three levels defined for
the attack model (hardware, network, and application) and can be broadly classified in two main
categories: anomaly-based detection, which learns the routine behavior of a user or application
and tries to capture anomalies, i.e., the deviations from the routine behavior (Garcia-Teodoro et al.
2009; Continella et al. 2017), and signature-based detection, which tries to characterize the generic
behavior of an attack as a signature and then monitors the system, detecting an attack when the
signature is observed. There are two main approaches for the last category: the automatic ap-
proach builds the signature by using behavioral analysis (system calls, function calls, etc.), while
the manual approach requires security experts to explicitly construct the signature by specifying
the malicious behavior (Cannady 1998).

2.2.3 Type of Data. Security systems can also be distinguished based on the type of data that
their detection algorithm processes. For example, a network intrusion detection system such as
Snort (Roesch et al. 1999) analyzes network packets at different network protocol levels, while
a host intrusion detection system analyses system call operations performed by an application
running on a host. We classify the data used by security technologies into three main categories:
(a) application data, (b) file data, and (c) network data. The first category includes both system calls
performed by applications and application level data exchanged on the network. For system calls
and function libraries, some mechanisms look only at the call itself, while others also inspect the
specific parameters of the call; similarly for HTTP protocol requests or emails, some mechanisms
look only at the header (e.g., for HTTP, they look only at the request line, i.e., GET and POST
commands), while others also inspect the body (e.g., the data being posted with an HTTP request).

In the second category (file data), we consider the files that are inspected to ensure that they do
not hide a security threat. The most relevant ones are Microsoft Office documents, PDF documents,
media files (video, pictures, etc.), and executable files. In the third category (network data), we have
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information contained in low-level network packets. Technically, low level refers to levels below
application. Different mechanisms may inspect both the packet header and the contained data or
the header only.

2.24  Ecosystems. Another dimension that we use to classify security systems is associated
with the ecosystems in which a detection mechanism can be applied. In particular, we can apply
defensive mechanisms in three main ecosystems: enterprise, mobile devices, and IoT. The enter-
prise ecosystem represents the typical organization infrastructure, which is composed of locally
connected PCs, servers, and network devices, but can also be extended to the use of private and
public cloud and web technologies. The mobile devices ecosystem is composed of personal devices
typically used in mobility (e.g., smartphones and tablets). The Internet of Things ecosystem is just
emerging, but it is already posing serious security concerns. It includes IP-enabled devices (e.g.,
netcams and smart appliances) as well as sensor networks synchronized to IP-enabled hubs.

2.2.5 Mapping Well-Known Cyber-Security Solutions to Our Classification. Table 1 summarizes
several cyber-security solutions according to the classification previously described. We differen-
tiate the solutions according to the source of the analyzed data: (a) network solutions include orga-
nization firewalls and Network Intrusion Detection Systems (NIDS); (b) content filtering solutions
include proxies, web client-side attack detection, and email phishing and spam detection; (c) end-
point solutions include Host-based Intrusion Detection Systems (HIDS) and Host-based Intrusion
Prevention Systems (HIPS) that usually monitor a device (system calls, file system integrity, etc.)
detecting malware; finally, we list the general category of security suites, which include commer-
cial products that typically offer a combination of technologies listed under the previous categories.
For example, anti-virus products now commonly include prevention of web scripting and phish-
ing attacks. In this category, we also find all-round security solutions that come as a black-box
(sometimes called security appliances or next generation firewalls), as offered by companies such
as PaloAlto Networks (Paloalto 2017) or Checkpoint (2017). Note that the term endpoint solutions
refers to the fact that host data processing is monitored, but it does not imply that the tools im-
plementing the technologies run in standalone mode on the host. For example, some anti-virus
tools are composed of two software applications, one running on the server side performing the
detection and the other one on the client collecting system information and sending them to the
server component. This architecture is mostly used in mobile environments where there are com-
putation and energy constraints. For each category, we provide references to commercial products
or scientific articles describing specific systems or techniques and classify them according to the
proposed dimensions. Note that certain systems, e.g., Snort (Roesch et al. 1999) (a well known
network intrusion detection system), appear in several cells of our table. This is because Snort, as
other tools, can be configured in different ways that match different categories.

3 A MODEL OF PRIVACY RISK ASSESSMENT

In this section, we suggest a general methodology for evaluating the impact that a cyber-security
technology has on the privacy of the people being monitored. We base our definition of privacy
mainly on the theory of contextual integrity (Nissenbaum 2004). We say that a certain technology
threatens privacy when private information is accessed in a way that can be used against the orig-
inal information norms and the control of the individual. For a threat to materialize, an adversary
should have the ability to associate a user’s identity with data that is considered private by the
individual (Solove 2006). As a consequence, to evaluate the privacy threat, we need to carefully
understand which parts of released data may lead to the inference of private data and which parts
can reveal the identity of a user (possibly joined with external information). The first are often
called sensitive attributes, while the second, quasi-identifiers.
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Table 1. A Classification of Cyber-security Solutions
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Security Suites
Cyber Network Content Endpoint (Anti-virus,
Protection Type solutions filtering solutions Appliances, ...)
Architecture Client-server (Roesch et al. (Smadi et al. (Portokalidis (Cheng et al. 2007;
System 1999; Paxson 2015; Nelms et al. 2010; Symantec 2016b)
1999) et al. 2016) Symantec
2016b)
Standalone (Roesch et al. (Vigna et al. (Lanzi et al. (Symantec 2016c)
1999) (Paxson 2003) (Kruegel 2010; Canali
1999) and Vigna 2003) et al. 2012; Feng
(Fette et al. 2007) | etal 2003;
Burguera et al.
2011; Fattori
et al. 2015)
Collaborative (Roesch et al. N/A N/A (Cheng et al. 2007)
1999; Ioannidis
et al. 2000;
Locasto et al.
2005; Xie et al.
2016;
Korczynski et al.
2016)
Detection type Anomaly- (Roesch et al. (Kruegel and (Hoglund et al. (Cheng et al. 2007;
based 1999; Paxson Vigna 2003; 2000 Symantec 2016c)
1999; Wang and Michelakis et al. Portokalidis
Stolfo 2004; Li 2004) et al. 2010)
et al. 2013)
Signature- (Roesch et al. (Fette et al. 2007; | (Lanzi et al. (Symantec 2016b)
based 1999; Paxson Vigna et al. 2010; Canali
1999; Danda and | 2003; Kruegel et al. 2012; Feng
Hota 2016) and Vigna 2003) | etal. 2003;
Burguera et al.
2011; Tripwire
2017)
Ecosystem Mobile Devices | (Encketal 2014; | (Rastogi et al. (Portokalidis (Cheng et al. 2007)
Portokalidis 2016) et al. 2010;
et al. 2010) Burguera et al.
2011; Qualcomm
2017)
IoT (Symantec (Symantec (Symantec (Symantec 2016b)
2016b; Danda 2016b) 2016b; Danda
and Hota 2016) and Hota 2016)
Enterprise (Roesch et al. (Fette et al. 2007; | (Symantec (Symantec 2016¢;
1999; Paxson Vigna et al. 2016¢) Paloalto 2017;
1999; Li et al. 2003; Kruegel Checkpoint 2017)
2013) and Vigna 2003)
Type of Data Application (Roesch et al. (Vigna et al. (Lanzi et al. (Cheng et al. 2007;
1999; Paloalto 2003) (Kruegel 2010; Canali Symantec 2016b, 2016c¢)
2017; and Vigna 2003; et al. 2012; Feng
Checkpoint Fette et al. 2007; et al. 2003;
2017) Smadi et al. Portokalidis
2015; Nelms etal. 2010;
et al. 2016) Burguera et al.
2011)
Files (Paloalto 2017; (Paloalto 2017; (Symantec (Symantec 2016b, 2016c)
Checkpoint Checkpoint 2016b, 2016c)
2017) 2017)
Network (Roesch et al. N/A N/A (Cheng et al. 2007;
1999; Ioannidis Symantec 2016c¢)
et al. 2000;
Paxson 1999) (Li
et al. 2013)
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The suggested taxonomy was inspired by several existing methodologies for privacy assessment
and analysis. First, we adopt data exposure, data sensitivity, and level of user control concepts from
Privacy Impact Assessment (PIA) (Wright and De Hert 2011; Oetzel and Spiekermann 2014) and
Surveillance Impact Assessment (SIA) (Wright and Raab 2012). These methodologies are used in
practice (Wright 2012; Wadhwa et al. 2015) for the design and deployment of specific information
systems to evaluate the risks versus the benefits. PIA processes ensure conformance with legal
and regulatory requirements, such as the ones required by the U.S. Department of Homeland Se-
curity (Clarke 2009) and the new European Union General Data Protection Regulation (GDPR)
(European Union 2016). PIA provides tools to determine the risks and effects of a system’s data
flows and to evaluate protections and privacy-by-design processes to mitigate potential risks.
As we analyze cyber-security technological frameworks rather than specific deployments and
projects, we disregard some concepts that cannot be addressed in this abstraction level, such as
internal procedures for data protection and other policy-related aspects of deploying the technol-
ogy. For the same reason, we incorporate elements that are based on well-established privacy fair
information practices, such as data exposure that is closely related to architectural choices (Spiek-
ermann and Cranor 2009), anonymity (Samarati 2001), and attribute disclosure (Machanavajjhala
et al. 2006), which are further described below.

Our taxonomy includes four main categories that model the privacy assessment of each technol-
ogy: data exposure, level of identification, data sensitivity, and level of user control. In the following
subsections, we define, expand, and establish each category within its respective theoretical back-
ground. Another important category of privacy assessment is the frequency of data release. In
many scenarios, information about users is collected periodically or continuously, e.g., when new
information becomes available (e.g., updated location of a user) or when partial views of the data
are collected by different parts of an information system (i.e., multiple releases). Consequently,
multiple privacy notions have been proposed to model this privacy risk (Wang and Fung 2006;
Xiao and Tao 2007; Shmueli and Tassa 2015; Shmueli et al. 2012; Riboni et al. 2012). In cyber-
security, systems monitor data constantly; thus, the common case is that systems access the data
in multiple releases.

3.1 Data Exposure

To analyze the privacy risk posed by each technology, we need to understand which entities have
access to the data and the context in which data exposure occurs. There are two main factors in-
fluencing data exposure: One is related to the system software architecture that defines the data
flow. The other is related to how data in transit, data at rest, and data in use are protected. Spiek-
ermann and Cranor define network centricity as the “degree to which a user’s system relies on a
network infrastructure to provide a service, as well as the degree of control a network operator
can exercise over a client’s operations” (Spiekermann and Cranor 2009). A higher network cen-
tricity means that the data are more accessible and controllable by external entities, such as data
collectors, service providers, location servers, and cloud infrastructure operators. Figure 2 depicts
typical network centricity models: (1) a standalone topology in which a user has full control over
a standalone client; (2) a centralized topology that rests on a centralized server that monitors data
or communications; (3) an external client-server third-party provider that monitors a network by
using the cloud; (4) a collaborative topology that carries out monitoring by using a decentralized
architecture.

Data exposure is not only affected by the entities that process the data and store it but also by the
mechanisms used for data protection. For example, a standalone architecture in which personal
data are stored and used without any protection (encryption or access control) has a potential risk
of exposing data to unauthorized parties. On the other hand, a system with high network centricity

ACM Computing Surveys, Vol. 51, No. 2, Article 36. Publication date: February 2018.



The Privacy Implications of Cyber Security Systems: A Technological Survey 36:9

- 1
~ / L\ / L\ N

a) Standalone b) Centralized c) External Client- d) Collaborative
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Fig. 2. Examples of network centricity models, each defined by a network topology.

may use secure channels to protect data in transit and encryption and secure computation to
protect data at rest and data in use, leading to overall low data exposure (Mascetti et al. 2011).

3.2 Level of Identification

It is well known that the simple removal of explicit identifiers from released data is not sufficient to
enforce anonymity (Samarati 2001). Indeed, in several cases, an adversary may re-identify the data
respondents by joining part of the released data, called Quasi-Identifiers (QIs), with available back-
ground knowledge. Consider, for instance, the release of a medical record including personal data
such as birth date, gender, and home town. Even if the record does not include the patient’s name
or social security number (SSN), an adversary having access to a personal information registry may
easily limit the set of candidate respondents to those people matching the personal information in
the record. In the worst case, the adversary can uniquely re-identify the respondent.

Several privacy notions have been proposed in the literature for measuring the level of re-
identification of released data, and algorithms have been devised to enforce those notions in dif-
ferent domains (release of database records, transaction data, statistics, etc.). Perhaps the most
known privacy notion in databases is k-anonymity (Sweeney 2002): a record is k-anonymous if
it can be associated with a set of at least k possible respondents. This privacy notion can be en-
forced by generalizing QI values such that each record belongs to a group (called a QI-group) of at
least k records having identical values for the QI attributes. Assuming that each individual is the
respondent of at most one record, each record can be associated with at least k individuals (i.e.,
the respondents of that record’s QI group). Hence, the value k is intended to measure the level of
protection from identity disclosure. However, this approach was later shown to have several draw-
backs, since the distribution of sensitive values associated with a group of k individuals (even if
undistinguishable) has a relevant impact on the privacy risk of revealing the value associated with
a specific individual (Li et al. 2007) (e.g., in the case where the same sensitive value is associated
with all individuals).

In a different line of work, unicity was suggested as a measure of the intrinsic re-identification
risk of a dataset (de Montjoye et al. 2013, 2015). Unicity quantifies how much outside information
one would need, on average, to re-identify a specific and known user in a simply anonymized
dataset. The higher a dataset’s unicity is, the higher the probability of successfully re-identifying
the user.

The extent to which individuals can be identified is a crucial metric in evaluating the privacy
risk. If the tracked data can be easily linked to the real identities of individuals (e.g., to their na-
tional identity repositories), then privacy risks have higher chances of being materialized. Unfortu-
nately, in most cases, it is very difficult to realistically model the external knowledge available to an
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adversary to re-identify individuals. Consequently, properly identifying the set of QI attributes and
the level of identification they impose becomes challenging.

In this article, we adopt the three levels of identification suggested by Spiekermann and Cranor
(2009), with minor refinement of their definitions:

(1) Identified: Unique identifiers, such as ID numbers, names, social security numbers, phone
numbers, or other information, can be used to precisely point to a specific individual.

(2) Re-identifiable (also called pseudonymous or linkable): Even if the information collected
regarding a user does not contain any unique identifier, it can be used to match the user
with some other information that is uniquely tied to the individual. Researchers have
demonstrated that this is feasible for various data sources, including medical records
(Sweeney 2002) and movie ratings (Narayanan and Shmatikov 2008).

(3) Anonymous: The user information available is insufficient for re-identification, no mat-
ter what inference is performed. When it is shown to be insufficient to limit the set of
identities to a set of less than k elements, the term k-anonymous is used (Sweeney 2002).

3.3 Data Sensitivity

As noted above, an adversary can perpetrate a privacy violation from either side of the sensitive
association. While k-anonymity provides some level of protection against re-identification, it does
not always prevent privacy violations. Indeed, if all the records in a QI-group share the same value
for a released sensitive attribute, the adversary can reconstruct the sensitive association between
each respondent of the records in that group and the sensitive value. Based on the above weakness
of k-anonymity, various privacy notions have been proposed to protect both sides of the sensitive
association. In particular, [-diversity (Machanavajjhala et al. 2006) ensures that the records in a
QI-group have sufficiently diverse values for the private attribute. Hence, the value / can be used
to measure the level of protection from both identity and attribute disclosure. While [-diversity
considers syntactic diversity among sensitive data, a further notion, named t-closeness (Li et al.
2007), has been introduced to offer additional protection from attribute disclosure based on the
semantics of sensitive data.

Anonymity is not enough to ensure privacy in all situations relevant to cyber-security. For exam-
ple, some services may require authentication with a real identity for billing or for accountability.
In these cases, privacy protection techniques need to focus on sensitive attribute disclosure. Ob-
fuscation via generalization is one of the most popular techniques. Generalizing location data, for
example, is based on the observation that location information becomes less sensitive when it is
less precise, i.e., knowing that an individual is in Manhattan on a given day is usually less sensi-
tive than knowing that an individual is at the address of a particular political party at the time a
campaign speech is given (Mascetti et al. 2014).

In this article, we are interested in the different types of sensitive data that can be linked back
to a user. Our suggested analysis takes a worst-case approach, aiming to understand which types
of data can potentially be monitored by a cyber-security system. Since the types of sensitive data
depend on the domain of the technology at hand, we analyze each domain individually, infer-
ring the type of sensitive information that can be obtained from the data. Examples may include
web pages visited, email content, and application data. To better understand the sensitivity level
of these tracked data items, we turn to the relevant literature. For example, recent studies have
shown that many sensitive attributes can be learned using web browsing data, including age
and gender (Goel et al. 2012; Hu et al. 2007). Furthermore, as Kosinski et al. show, “Facebook
Likes can be used to automatically and accurately predict a range of highly sensitive personal at-
tributes, such as sexual orientation, ethnicity, and religious and political views, personality traits,
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intelligence” (Kosinski et al. 2013). Similar results were obtained via the analysis of applications
used on mobile devices (Staiano et al. 2012; Achara et al. 2015). Network traces (i.e., IP packet
traces) can also reveal sensitive information, such as host behavior and network topology (Pang
et al. 2006; Ribeiro et al. 2008), even if the network traces are anonymized (Coull et al. 2007).

It is important to note that both sensitive attribute obfuscation and k-anonymity (together with
its variants described above) share the same limitation: the promised level of protection is achieved
only if the assumptions about the external knowledge available to an adversary hold in practice;
if the adversary has additional information, no formal privacy guarantee can be provided.

In the context of privacy-preserving data publication and analysis, other privacy notions have
been proposed that do not strictly rely on external knowledge assumptions. In particular, differ-
ential privacy (Dwork 2006) guarantees that the probability distribution of query answers to a
statistical database is essentially the same, without regard to the existence of a single record in the
database. This notion can be enforced by adding noise in a principled way to query answers, and
it protects both sides of the sensitive association. Different variants of differential privacy exist. In
e-differential privacy, the probabilistic inference of the existence of a single record is bounded by
a factor exp €. In general, values of € less than 0.1 are believed to provide strong protection, while
values greater than 10 are considered weak (McSherry and Mahajan 2010).

3.4 Level of User Control

If identified or identifiable personal information is collected, then Fair Information Practices point
to mechanisms of user control as policy-based mechanisms that can mitigate privacy threats
(Wright and De Hert 2011). Specifically, privacy impact assessment methods describe how notices
and choices can inform users about data practices and provide meaningful controls to the user
(Oetzel and Spiekermann 2014; of the Australian Information Commissioner 2014). Moreover, for
technologies to be perceived as trusted, they are required to provide users with the ability to view
a comprehensive or a short privacy policy that includes information about the collection, analysis,
use, processing, exposure, and transfer of personal data (Pollach 2007).

However, it is very challenging to design supportive technological interfaces that provide users
appropriate ad hoc notices regarding data collection and use choices. According to Spiekermann
and Cranor, meaningful and timely information “can be offered with minimal disruption by posi-
tioning notices at the point in an interaction where they are most relevant, by providing informa-
tion in a format that succinctly conveys the most important information, and by limiting notices
to situations that are most likely to raise privacy concerns” (Spiekermann and Cranor 2009). Be-
yond notices, we can measure the level of control that technologies give their users in specifying
preferences and have them applied to current and future situations.

To analyze the level of user control, we look at the ability of a technology to interact with a
user. While the actual notice and choice relies on the actual implementation of the technology, a
preliminary condition for applying them is the underlying interaction model.

We differentiate between three general categories that characterize the possible interactions
between a technology and a user:

(1) No control: In this category, a system cannot interact with a user in a straightforward
manner, making control a hard feature to implement. For example, if a system monitors
low-level networking protocols on backbone Internet routers, then interacting with the
end user is extremely hard to achieve. As a result, displaying privacy policies or asking
the user for her preferences is almost impossible.

(2) Indirect control: In this category, a system has the potential to interact with a user; there-
fore, in certain implementations, the privacy aspect of the technology can be controlled
by the user. For example, if the technology is installed on the computer of a user, such as
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a local anti-virus system, then the user can uninstall the application, or the designers of
the technology can provide notices and choices to the user.

(3) Full control: There is an existing infrastructure in which a user can interact with the tech-
nology, be notified about privacy and even express her privacy preferences. For example,
systems that are deployed as mobile applications on the Android or the iOS platform need
to explicitly state the data they want to access and to receive the consent of the user.

4 ANALYSIS

In this section, we analyze the privacy implications of cyber-security monitoring technologies by
applying the privacy risk assessment taxonomy (Section 3) to the cyber-security defense systems
(Section 2). We see several relations between the characteristics of cyber-security technologies and
their underlying impacts on privacy. We analyze each of the dimensions and look at the effects in
terms of the privacy risk of each design decision related to a dimension.

4.1 Impact of the System Architecture

The specific software architecture of a system determines, among other things, how data are trans-
ferred between different entities and which process each entity should execute. Hence, the archi-
tecture is directly related to the potential data exposure to different parties. Standalone mecha-
nisms, which are installed on a user’s device (e.g., computer, smartphone, or wearable) and op-
erate only locally, provide access only to the user (Symantec 2016c; Portokalidis et al. 2010) and
therefore have low network centricity. Most systems, however, funnel data to a centralized server
(Cheng et al. 2007; Symantec 2016b; Roesch et al. 1999; Paxson 1999; Portokalidis et al. 2010).

As explained in Section 3.1, the actual level of data exposure depends also on how data are pro-
tected while stored, while in use (processing) and when in transit. While most defense mechanisms
protect data in transit, low protection is usually offered for data at rest and in use.

The exposure of unprotected personal data to multiple parties carries a privacy risk. This hap-
pens not only in the case of untrusted parties, but also in the case of attacks to these parties, as
well as in the case of transfer of part of this data to other parties not explicitly involved in the
cyber-security architecture. For instance, governments currently require organizations to share
cyber-security information with the government and through collaborative exchanges, informa-
tion that often includes personal information (Sales 2013).

Many central cyber-security systems profit from sharing information among them regard-
ing cyber threats and sometimes use a 3rd-party provider to enable large-scale collaboration
(Vasilomanolakis et al. 2015a). In turn, this can lead to a higher level of network centricity and
to an increased threat to privacy. To counter this trend, several recent works relied on a peer-
to-peer architecture, in domain areas such as anti-viruses (Cheng et al. 2007), malware detection
(Marchetti et al. 2009) and NIDS (Roesch et al. 1999). Peer-to-peer architectures provide the ability
to collaborate but with a distributed model in which there is no single owner of the data and where,
in principle, the anonymity of users can be better guaranteed by applying specific techniques
(Ioannidis et al. 2000). Lincoln et al. (2004) used sanitation methods to remove identifying proper-
ties such as IP addresses from collaboratively shared datasets. However, it is unclear whether these
methods can withhold a data-linking attack. More robust approaches rely on Bloom filters to code
suspicious IP addresses (Gross et al. 2004; Locasto et al. 2005; Bianchi et al. 2008; Vasilomanolakis
et al. 2015b). Burkhart et al. (2010) suggested using multiparty and privacy-preserving protocols
for event correlation, such as intrusions and DDOS attacks. Shi et al. (2007) used queries over en-
crypted data to enable auditors to decrypt flows whose attributes fit a specific key provided by a
trusted authority. Both encrypted analysis and multiparty computation have the added benefit of
ensuring that data can only be used by the designated receivers of the data.
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4.2 Impact of the Type of Detection

Anomaly-based cyber-security mechanisms need to build a model of the normal behavior of a
system. In principle, this does not imply using personal data, as shown by AccessMiner (Lanzi
et al. 2010). However, there are mechanisms that aim at building a detailed model by monitoring
the specific operations performed by a user; this may imply inspecting data that can reveal per-
sonal information (e.g., Snort (Roesch et al. 1999)). Many anomaly recognition systems build the
model once during the learning phase (usually on a server) and then transfer it to the client for
monitoring and to report any deviation. Since the normal system behavior may change over time,
some anomaly systems also continuously or periodically monitor the operations to keep the model
updated using active learning techniques (Moskovitch et al. 2009).

Many cyber-security systems support both anomaly and signature detection (such as
Snort (Roesch et al. 1999)). Signature-based detection systems build a model of an attack; this does
not usually require access to personal data but rather expert knowledge on the attack. During
monitoring, however, the system could require access to user data and activity with the purpose
of finding a signature match. In some environments, such as in personal computers, this can be
done locally (using a standalone architecture), avoiding the exposure of any personal data to third
parties. In others, such as an enterprise cloud or in mobile systems, there are systems that need to
search for signature matching remotely on the server (e.g., client-server or collaborative systems).
To this end, these systems constantly send user and system operations to the server, causing mul-
tiple releases of personal data. In this case, signature-based systems may also pose a privacy threat
both in terms of identity and attribute disclosure.

4.3 Impact of the Ecosystem

4.3.1 Mobile Ecosystem. The mobile ecosystem is characterized by devices that usually contain
very sensitive personal (and business) data, including contacts, communication patterns, and the
whereabouts of a user. Hence, one of the major privacy impacts of cyber-security solutions for this
ecosystem is the high sensitivity to attribute disclosure. Similarly, these devices contain informa-
tion that can be used to easily re-identify a user (e.g., contacts and mobile account information).

4.3.2  loT Ecosystem. A somewhat similar consideration holds for the IoT ecosystem. Con-
sidering that, for example, home automation systems may continuously detect home activities,
health-care-related IoT systems may reveal medical conditions, and IoT installations in smart en-
vironments may include cameras or other systems that can directly or indirectly identify users
performing activities in specific places at given times. These ecosystems are commonly character-
ized by an architecture that includes one or more gateways under the user’s control; they also often
rely on cloud data processing. When a cyber-security system performs detection on the gateway,
the risk of data exposure is negligible, but whenever processing is moved to the cloud, this is no
longer true.

4.3.3 Enterprise Ecosystem. Considering the enterprise ecosystem, particularly the typical or-
ganization IT infrastructure, user identity is usually disclosed or easily derived using static IP
addresses, along with the infrastructure’s DNS association, and MAC addresses uniquely associ-
ated with an individual. Hence, whenever data that includes an IP address or a MAC address are
released as part of the cyber-security system, the risk of identification is high. Concerning attribute
disclosure, in principle, this may include presence and location data, financial data, medical data,
and performance indicators that may be considered sensitive. In enterprise ecosystems, there is a
tendency to use centralized client-server systems managed within the organization. In this case,
data exposure is limited, since personal data are not sent to third parties.
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4.3.4  Ecosystem and User Control. Current cyber-security systems offer little, if any, control to
the user regarding the way data are inspected; hence, privacy control can be considered nonex-
istent or very low for all current systems. However, the ecosystem often determines the mode of
interaction with the user; hence, cyber-security systems for different ecosystems have different
potential impacts on the privacy control they may offer. The mobile environment allows users
to receive notices (e.g., via notifications or pop-ups) and enable or disable permissions related to
apps and services; hence, this ecosystem has the potential for a good level of privacy control; un-
fortunately, the control is currently limited to the standard permissions that a system platform
offers to apps, which are requested only once, i.e., upon installation. Current anti-virus products
for the Android platform explicitly ask for nearly complete access to a system (e.g., AVG 2017 asks
for approximately 20 permissions related to messages, phone calls, network communication, and
storage).

The 10T ecosystem includes many devices that do not allow any direct interaction with the
user; hence, interaction is possible only at the administrative level on the gateway or through an
interface with a server-side component when present. Enterprise environments usually include
PCs and devices with preinstalled and preconfigured software that offer no privacy control to
the end user. These environments often also use NIDS and enterprise malware detection systems.
Since these systems operate on routers of the organization network, analyzing data at low protocol
levels independent of specific applications, it is quite natural that no control is given to the final
user. Standalone systems, such as PCs, allow the user some form of control, including installation
consent and activation/deactivation of specific protections; however, these actions are currently
not associated with any explanation regarding their privacy implications.

4.4 Impact of Monitored Data

The possibility of anonymization in cyber-security is tightly related to the type of monitored data.
Each type of data provides different levels of protection for users, ranging from data that is fully
identified to data that can be re-identified but only with some significant effort. It is important
to note that we have not found a cyber-security technology that claims that it can provide full
anonymization to its users, given the existing re-identification body of knowledge. Several systems,
such as phishing detectors, spam detectors, and mobile protection systems, have direct access to
straightforward identifying information, such as a user’s name, email address, phone number, or
email content (sent and received). To protect privacy, these systems require complex mechanisms
that can obfuscate identifying details to restore anonymity (Di Castro et al. 2016).

In many cyber-security mechanisms, the monitored data do not directly contain the identity
of users but are sufficient for re-identifying users. For example, many types of malware detection
systems and anti-virus systems require ongoing access to system calls (including their parameters),
which often contain information about usernames, passwords, and other types of information that
can be used to identify a user. Web monitoring systems access application-level protocols, such
as HTTP and SMTP, all of which regularly contain information that can be used to re-identify
users. For instance, HTTP header information can reveal personally identifiable information, such
as email addresses typed in a web form (Starov et al. 2016) or the specific browser being used
(Nikiforakis et al. 2013). Similarly, mobile protection systems access information that can be used
to re-identify users, including the configuration of mobile devices (Kurtz et al. 2016).

Cyber-security systems that operate using network data may be limited to inspecting network
packet headers or accessing the content handled by higher-level protocols. In the first case, the IP
addresses and logical ports of both senders and receivers are revealed. We have already noted that
within organizations, static IPs are often directly mapped to specific individuals. More generally,
an IP address can provide information such as approximate geographical location and, combined
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with other sources, the online services for which an individual has registered, personal interests
based on websites visited, and organizational affiliations (Commissioner 2013). The combination
of these properties can potentially lead to personal identification.

Considering the privacy risks involved in attribute disclosure, cyber-security technologies that
inspect HTTP headers and content in detail may also reconstruct browsing history and the con-
tent of query strings, which may be sensitive (and also used as quasi-identifiers (Malandrino and
Scarano 2013)). The same holds for email content that, even when not used for re-identification,
may be very sensitive. When files are the data being inspected, the file content may be sensi-
tive (relevant for attribute disclosure), but it may also be used for re-identification (e.g., a tagged
selfie or biometrics data). The file name itself may sometimes be both sensitive and useful for re-
identification. When inspected files are executables, the risk of revealing identifying or sensitive
information is much lower. Even when the type of data being inspected is network packets, the
data can reveal the sender and receiver hosts in terms of IP addresses. When the data are not lim-
ited to the header but also include the content, unless encrypted, the whole communication can
be exposed, making the risk of sensitive attribute disclosure potentially high.

4.5 Analysis Summary

The analysis reveals that different aspects of cyber-security systems have different impacts on
possible privacy breaches due to the exposure of identifiable personal data. Despite the analysis
being quite involved and dependent on the specific design choices of a system with respect to
different dimensions, a high-level consideration emerges: The system architecture has the most
impact on data exposure, the type of data being inspected influences identification and sensitivity,
and the ecosystem impacts user control (e.g., mobile devices may easily provide alerts, while IoT
devices may not have a direct interface) and usually contains particular data sources that can be
integrated with the some information to re-identify users.

It is important to consider that certain characteristics of cyber-security technologies may signif-
icantly influence others. For example, anomaly-based detection is usually performed in a central-
ized client-server architecture, since a server has more computational resources and can improve
the accuracy of the model by considering data from multiple systems. Hence, based on our analysis,
privacy risks due to correlated cyber-security properties will lead to combined risks.

Table 2 summarizes our considerations and can guide the analysis of a specific cyber-security
system, suggesting for each characteristic of the specific cyber-security solution which privacy
aspects should be considered to evaluate the related risk.

5 CASE STUDY: INFORMATION SECURITY FOR SMART HOME AUTOMATION

We present a case study of a smart home automation system to illustrate how our guidelines can be
applied to the analysis of security systems. The considered use case reproduces the general archi-
tecture that is representative of different mainstream products. In particular, we consider the gen-
eral architecture assumed by a major security market player in a recent technical report (Symantec
2015a). The system is depicted in Figure 3. Several sensors are deployed at home, including pres-
ence sensors, power meters, wall switch sensors, smart thermostats, gas sensors, microphones,
and cameras. Sensors periodically communicate their data via a wireless network protocol such as
Z-Wave to the home gateway. Through the gateway, a remote service provider can update the sen-
sor firmware, send configuration messages to sensors, and send commands to actuators. Moreover,
specific gateways may run custom applications that directly control sensors and actuators. Web
applications allow the user to configure the home automation directives, to enable or disable sen-
sors, and to send commands to actuators. The user can access these apps either locally or remotely
using a mobile device. Authentication is based on passwords. Remote access to the gateway can be
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Table 2. Guiding Principles for Privacy Analysis of Cyber-security Systems

Cyber-security system features

Privacy Implications and suggested analysis

Dimension Type | Sub-type
Standalone [Exp] Low network centricity, but check data at rest and data in use protection.
Architecture
of system . [Exp] High network centricity. Check policies, data in transit and data at rest/use pro-
Client-server . . L
tection for server and third party entities.
Collaborative [Epr High network centricity. Check data in transit and data at rest/use protection for
sharing users.
[Id] [Sens] Re-identifying and sensitive data accessed during training and monitoring.
Type of Anomaly-based Check specific data and degree of re-identifiability/sensitivity Check risk of cor-
Detection relation between multiple releases used to update the model
. [Id] [Sens] Identifiable and sensitive data accessed during monitoring. Check specific
Signature-based . P s
data and degree of re-identifiability/sensitivity
. . [Id] Check for re-identifying data as contacts & location. [Sens] Check for access to
Mobile Devices L . . .
communication patterns. [Ctrl] Check level of user control (limited app permissions).
Ecosystem
[Id] Check for re-identifying data (e.g., video from cameras) [Sens] Check for access to
IoT sensible data on medical conditions, behavioral data [Exp] check architecture (Gateway,
cloud) and its risks
[Id] Check for re-identifying data (e.g., static IP/MAC address) [Sens] Check for sensi-
Enterpri ble data as presence, financial records, work performance [Exp] usually medium net-
erprise work centricity (private cloud/server) but check data protection [Ctrl] check for con-
trol/notification on PCs. Check for network monitoring without notification.
System calls [Id] Usually preserves anonymity [Sens] check if info on used appli-
Type (no param.) cation is sensitive
of Data Application | g ctem calls [1d] Re-identifiable (e.g., by name, address from login forms). Estimate risk. [Sens] Re-
Y vealed sensible data includes application used, files, input/output, network communi-
with param. i i
cation (web browsing)
HTTP head [Id] Re-identifiable (e.g., by web browsing analysis, username). Estimate risk. [Sens]
€ader | Revealed sensible data includes Web browsing history, system information
HTTP head [Id] Re-identifiable (e.g., by web browsing analysis, username). Estimate risk. [Sens]
€ACer | Revealed sensible data includes Web browsing history, system information, cookies,
+ content
forms, passwords
[Id] Identified (e.g., by signature, name, physical address) or re-identifiable (e.g., email
Emails address, affiliation). Estimate risk. [Sens] Revealed sensible data includes email content,
sender/receiver
[Id] Re-identifiable (e.g., by signature). Estimate risk. [Sens] Revealed sensible data in-
Documents .
cludes personal content, business content
Files
Executables [1d] Usually preserves anonymity
Medi [Id] Re-identifiable (e.g., by tagged photos, voice, biometrics) [Sens] Revealed sensible
edia data may be media content
P X [Id] Re-identifiable (e.g., by static IP address in organizations, geo-location, organiza-
packet tional affiliation). Estimate risk. [Sens] Revealed sensible data includes sender/receiver
Network header .. .
hosts (visited websites)
P packet [Id] Re-identifiable (e.g., through IP, username, email). Estimate risk [Sens] Revealed
header . . . -
+ content sensible data includes sender/receiver hosts, communication content
conten

Note: [Exp] Data Exposure; [Id] Identification; [Sens] Sensitivity; [Ctrl| User Control;

Frequency of Release.

ACM Computing Surveys, Vol. 51, No. 2, Article 36. Publication date: February 2018.



The Privacy Implications of Cyber Security Systems: A Technological Survey 36:17

Hardware
protection IDS/Malware
systems Protection

l IDS/Malware
Protection

ﬁ ﬁ / Automation
<>

Service Provider

<=
ﬁ ﬁ Home gateway Internet

Sensors and
Actuators at home Mobile Web

Client

Anti virus

Fig. 3. Case study: A home automation system, with several layers of cyber-security defense systems.

restricted to specific IP addresses. The automation service provider can remotely install, remove,
and update apps; it can also update the gateway firmware. Communication between the gateway
and external entities is done through the Internet.

As discussed in Symantec (2016a), ONeill et al. (2016), and Lin et al. (2015), an adversary
can perform different attacks to achieve different goals. An adversary’s goal may be to steal or
track personal data (e.g., video streams from cameras, personal habits, and times at which the
user is away from home). This goal can be achieved, for instance, by installing malware on a
gateway that forwards sensor data to the adversary. Another goal can be to take control of the
system to trigger actuator operations (e.g., disabling the anti-theft security system). This goal can
be achieved via different methods, including stealing the user’s password, installing malware either
on the gateway or on the mobile device, or installing malicious firmware on the gateway. Moreover,
specific actuator operations can be triggered by tampering with data in transit from sensors to the
gateway. The typical attack vectors are the network and application layers.

Unfortunately, a recent study shows that many consumer-level IoT products currently on the
market lack effective cyber-security mechanisms, leaving the home automation system exposed to
several vulnerabilities (Antonakakis et al. 2017). However, the increasing awareness of users and
companies regarding cyber-security, as well as novel data protection regulations, will inevitably
determine an improvement of protections mechanisms for IoT systems in the near future. Hence,
for the sake of this case study, we assume that the home automation system adopts state-of-the-art
cyber-security mechanisms, such as Danda and Hota (2016). In particular, we assume that the sys-
tem is provided with the following cyber-security mechanisms, which are envisioned in Symantec
(2016a) and Sadeghi et al. (2015) as good practice for IoT infrastructures. Communication is pro-
tected by encryption and secure authentication. Applications running on a device are protected
through code signing. The gateway and the automation service provider infrastructure run HIDS
and HIPS for malware detection. The mobile device is provided with a security suite including
anti-virus and anti-phishing tools. A tampering detection system monitors the functionality of
the sensors.

Next, we analyze the privacy implications of the cyber-security solution according to the guiding
principles presented in Section 4. Our analysis is summarized in Table 3.

Architecture of the System. In this case study, the cyber-security defense systems adopt different
architectures. The hardware protection system adopts a standalone architecture, while host-based
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Table 3. Guiding Principles for Privacy Analysis of the Case Study

- Cy.ber—securlty system features Privacy Implications and suggested analysis
Dimension Type
Architecture Standalone (hardware [Exp] Check whether sensor data are
of system pr9t6Cti0n system), communicated in plain text or not.
Client-ser ver ot Communicate sensor data to the gateway
Collaborative i through a secure channel (elliptic curve
(h9st—based security cryptography). Communicate data from the
suites) home gateway to remote entities using an
encrypted channel.
Type O.f Apomaly-based or [Id] [Sens] Home sensor data,
Detection S1gnatur. e-based especially if observed on the long term,
(depending on the used may reveal sensitive information (presence,
HIDS and HIPS routines, medical conditions) or reveal the
products) user’s identity. Check specific data and
degree of re-identifiability/sensitivity.
Ecosystem Mobile Devices, IoT [Sens] High data sensitivity (activities,
habits, personal data). Check for sensitive
data. Check for risks of inferring additional
sensitive data. [Ctrl] Limited user control.
Type Application, Network [Sens] Some kinds of sensor data are
of Data inherently sensitive (audio-video streams),
other kinds may be used to infer sensitive
data (number of inhabitants, personal
lifestyle. [Id] The user’s identity may be
reconstructed based on the home gateway
IP address or Web activity. Check degree of
re-identifiability.
Note: [Exp] Data Exposure; [Id] Identification; [Sens] Sensitivity; [Ctrl] User Control; Frequency of Release.

security suites adopt a client-server or a collaborative architecture, depending on the software in
use. The network centricity of the hardware protection system is low. However, a recent study
conducted on IoT products currently on the market shows that in many cases (19% of evaluated
products) the communication of the IoT system with the cloud is not protected by end-to-end en-
cryption (Symantec 2015a). Moreover, in most cases, sensors communicate their data to a gateway
using proprietary plain-text protocols to reduce computational and transmission costs, increasing
the level of data exposure. Ideally, sensor data should be transmitted using an efficient and secure
channel. Technologies such as elliptic curve cryptography may be lightweight enough to fulfill
the requirements of several 10T infrastructures. However, the network centricity of HIDS, HIPS,
anti-viruses, and anti-phishing tools is relatively high. However, the data exposure is reduced if
encrypted channels are used to communicate the data among the home gateway and external
entities, and if sensitive data are stored on the home gateway and on the infrastructure of the
automation service provider in an encrypted format.
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Type of Detection. Depending on the type of detection, different HIDS and HIPS mechanisms may
act at different levels. While some technologies may only inspect system calls, other systems may
also inspect other information, such as sensor data. For instance, a camera tampering detection
system must inspect the video stream of a camera. The same approach may be used to detect
tampering with other kinds of sensor data. In particular, anomaly-based detection relies on the
long-term observation of a user’s data, which may enable the recognition of personal habits and
routines and even medical conditions. Moreover, sensor data (e.g., biometric data) and low-level
system information (e.g., IP addresses) may lead to the reconstruction of an individual’s identity.

Ecosystem. The ecosystem of this case study, which includes IoT and mobile devices, is complex.
The complexity of the ecosystem calls for the adoption of different cyber-security mechanisms,
which involve a large spectrum of personal data. The ecosystem is characterized by very high
data sensitivity, particularly regarding data that involve indoor and outdoor activities, as well as
other personal data. Moreover, when matched with external knowledge, this private data may lead
to re-identification of an individual.

Type of Data. The cyber-security mechanisms in our use case include an IDS, which is operated
by the automation service provider, and may inspect all network data packets. Such packets may
include inherently sensitive data such as audio-video streams and other types of data that may
be used to infer sensitive information. For example, presence sensor data can reveal the times at
which a user is absent from home. Recurrent absence patterns can be inferred by observing the
presence sensor data over a long period of time. Sensor-based security systems can have access
to hardware-level information, such as fine-grained power meter data. The analysis of such data
could yield several kinds of privacy-sensitive information, such as appliances in use in the home,
the number of inhabitants, and personal lifestyles (Laughman et al. 2003). Activities carried out
in the home can also be recognized based on a combination of different sensor data (Ye et al. 2012).
The long-term analysis of recurring activities may enable the recognition of particular kinds of
diseases, including cognitive impairment (Hayesa et al. 2008). Even though explicit identifiers are
not exposed to the cyber-security mechanisms, other data can be used to re-identify the data owner.
The user’s identity may be inferred from the (static) IP address of the gateway and from sensor
data (e.g., video streams) or from the Web activities observed by the security suite running on the
user’s mobile device.

User Control. Most users have very limited awareness about what type of data is collected about
them using IoT devices, and how this data can be used to infer sensitive information (Egelman
et al. 2015). Moreover, most of the IoT devices for smart homes are “closed”, i.e., the user has no
control on the cyber-security mechanisms actually running on the device. Even in the cases in
which some control is offered, lack of awareness can lead to misconfiguration possibly resulting
in privacy breaches. The lack of awareness also prevents the users from controlling cyber-security
systems operated by the automation service provider, even if those products would offer such a
possibility.

6 DISCUSSION

Cyber-security systems pose a unique challenge to privacy. While they protect people’s digital
safety and information privacy from external threats, our analysis reveals that many cyber-security
systems regularly access personal and sensitive information. To balance external and internal
threats, we first need to understand the collection of personal information and to evaluate its use
against the protection it provides and against other alternatives that maintain adequate security
but provide better privacy. In the following section, we discuss the implications of our work on
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deploying cyber-security systems, developing new privacy enhancing technologies, and regulating
cyber-security operations.

Architectural Considerations. Our analysis highlights the complex impact of the type of architec-
ture on the privacy of cyber-security systems. We could not find many instances of contemporary
standalone systems, as shared databases are now crucial for recognizing threats and synchronizing
responses. It seems reasonable to argue that standalone solutions are not sufficient, though they
are considered optimal from the perspective of privacy (Spiekermann and Cranor 2009). Therefore,
the design of cyber-security systems should seek other architectures as a means to control access to
private information. Collaborative intrusion detection systems offer an interesting model for such
an architecture. Since private information is explicitly shared between different parties, a diverse
set of Privacy Enhancing Technologies (PETs) has been proposed. We observe a trade-off between
trust and privacy when evaluating different architectural solutions. For example, in collaborative
architectures, there is no inherent trust regarding the other parties and therefore more restrictive
privacy enhancing technologies must be used. It is very conceivable that privacy-enhancing so-
lutions developed for collaborative architectures can also be applied to centralized architectures.
More broadly, we argue that cyber-security researchers and developers should assume that ev-
ery system, regardless of its architecture, should be designed as if the information will be shared
with untrusted partners. In this way, the design of a system can protect the privacy of its users by
default and can further protect that privacy against future cyber attacks and data leakage.

Protecting Privacy with Technology. There are several important challenges in developing and
studying new methods for PETs that can be applied to cyber-security. Many of which have been
used in the context of sharing network events and intrusions. A small number of solutions were
designed to work in centralized environments, such as email filtering (for spam and malware) in
large email servers using anonymization methods (Di Castro et al. 2016). These studies provide an
initial set of solutions for privacy-oriented cyber-security technologies. However, they are far from
sufficient. We see that PETs for centralized architectures are lacking and that the set of obfuscation
and anonymization solutions are still very limited.

Future privacy-aware cyber-security solutions should aim at minimizing data exposure, either
by reducing network centricity, for example, by performing a larger part of the analysis at the
client side or by providing more comprehensive protection to data during transfer, use and rest
using sensitivity analysis (Shu et al. 2015) and cryptographic means such as secure multiparty
computations (Liang et al. 2015).

Regulation and Policy. In environments in which privacy is difficult to achieve, regulation and
policy become the feasible solutions. Privacy-by-design principles call for an analysis of system de-
sign elements and determine whether data handling is legitimate or not by considering the privacy
regulations of users’ countries and the legal and technical precautions taken by an organization
(Oetzel and Spiekermann 2014). Even if an organization concludes that all the personal informa-
tion is handled legitimately, after performing the analysis that we propose, the reports resulting
from the analysis will be precious documentation for accountability purposes in the event of a
data breach or dispute. Moreover, a detailed map of personal data processing and related privacy
impact assessments are increasingly becoming a standard requirement in several privacy regimes,
such as in the European GDPR (European Union 2016).

System designers and regulators have several tools for mitigating privacy threats when ar-
chitectural solutions and privacy-enhancing technologies do not suffice. The principle of notice
and consent is an important fair information practice principles (FIPP), requiring that people
should be given notice regarding cyber-security information practices before any of their personal
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information is collected. However, the implementation of notice and consent should be considered
carefully. While most privacy policies and end user license agreements (EULAs) describe what
type of data is collected by the cyber-security systems, these agreements are criticized for being
too long (McDonald and Cranor 2008) and unreadable by the average Internet user (Sumeeth et al.
2012). It is suggested to use notice and consent mechanisms that provide users with standard-
ized interfaces that allow them to compare and understand the privacy practices of services (Kel-
ley et al. 2009), with timely and contextualized information when deciding which service to use
(Schaub et al. 2015), and with choices that are actionable and are tailored to users’ preferences
(Hirschprung et al. 2017).

Legal experts may rely on security experts or software engineers to evaluate technical aspects
of data management. Unfortunately, it is often the case that these experts do not have specific
training in privacy and may oversee important issues. An interesting case study is a court order
(Authority 2016) of the Italian data protection authority involving an Italian university that was
continuously collecting data associated with MAC addresses for several reasons, including cyber-
security. The data protection authority rejected the university’s claim that they were handling
anonymous data. Therefore, we argue that organizations and developers should focus on privacy
engineering principles and should make the distinction between privacy and security clearer.

Balancing Privacy and Safety. Embedding privacy in cyber-security requires a new type of think-
ing regarding the balance of security and privacy. In many cases, the enhancement of privacy can
degrade the resolution of data and therefore the effectiveness of security system. Analyzing this
trade-off is an open problem, as it requires established methods to measure both security outcomes
and privacy. For example, Jin et al. (2017) aimed to characterize the trade-off between intrusion de-
tection accuracy and the privacy of organizations in collaborative intrusion detection and showed
that a stable equilibrium is possible under several assumptions. An important future work can be to
identify and develop new metrics for quantifying the level of security protection and privacy harm
of a given system. These types of measures can help guide the future development and regulation
of privacy-oriented cyber-security systems.

7 CONCLUSIONS

The taxonomy presented in this article suggests a way to classify and analyze the privacy im-
plications of cyber-security defense systems. We find that almost all cyber-security technological
categories require some access to personal sensitive information, under reasonable assumptions
of re-identification and computing power. Our analysis reveals that evaluating the privacy risks
involved in using a cyber-security system requires more than the system’s generic technological
category; it is necessary to classify them in terms of the dimensions identified in Section 2 and to
carefully consider their impact on privacy risks, as discussed in Section 4.

Since different privacy-preserving techniques have been proposed to mitigate specific privacy
threats (e.g., anonymization and obfuscation for decreasing the sensitivity of the personal data), we
believe that the identification of the privacy risks involved in a specific aspect of a cyber-security
technology can offer guidance not only in choosing one technique over another but, more impor-
tantly, in designing more privacy-aware cyber-security technologies with little or no compromise
with regard to their effectiveness in protecting from cyber attacks.

For policymakers, this analysis can be used to guide the regulation, checks, and design require-
ments that follow the development of a technology. This is particularly important against the back-
drop of legislation and policies that set the cyber-security requirements of government agencies
and companies. This analysis can also serve as a framework for analyzing the trade-off between
the risk that cyber-security systems protect against and the privacy risk that is imposed by the
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systems themselves. Because our analysis shows that users can be identified in nearly all cyber-
security systems, we argue that policies should emphasize the embedding of privacy protections
and controls in cyber-security requirements.

Our analysis shows the need of designing privacy-enhancing technologies for cyber-security
mechanisms. Privacy-aware cyber-security solutions can control data exposure by choosing
privacy-oriented architectures (such as client side or distributed) or by providing more advanced
protection to monitored data. Such solutions must also be more transparent to users with respect to
the type of information they collect, be more explicit about their privacy and security implications,
and provide a better level of control.
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